2(a)	A correct method to sum the series, most likely by the method of differences. Look for $\frac{10}{r^{2}+8 r+15}=\frac{A}{r+3}+\frac{B}{r+5} \Rightarrow A=. ., B=$. . followed by an attempt at the sum (or with 1 instead of 10). (Induction may be attempted - see alt for (a).)	M1	3.1a
	$\frac{10}{r^{2}+8 r+15}=\frac{5}{r+3}-\frac{5}{r+5} \text { or } \frac{1}{r^{2}+8 r+15}=\frac{1 / 2}{r+3}-\frac{1 / 2}{r+5}$	B1	1.1b
	$\begin{aligned} & \sum_{r=1}^{n} \frac{10}{r^{2}+8 r+15}=5 \sum_{r=1}^{n}\left(\frac{1}{r+3}-\frac{1}{r+5}\right) \\ = & \left.5\left[\left(\frac{1}{4}-\frac{1}{6}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{6}-\frac{1}{8}\right)+\cdots+\left(\frac{1}{\not 2}\right)-\frac{1}{n+5}\right)\right] \end{aligned}$	M1	2.1
	$=5\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{n+4}-\frac{1}{n+5}\right)$	A1ft	1.1b
	$=5\left(\frac{5(n+4)(n+5)+4(n+4)(n+5)-20(n+5)-20(n+4)}{20(n+4)(n+5)}\right)=\ldots$	M1	2.1
	$=\frac{9 n^{2}+41 n}{4(n+4)(n+5)} \quad($ So $k=4)$	A1	1.1b
		(6)	
(b)	As $n \rightarrow \infty, T_{n} \rightarrow \frac{9}{4}$ or appropriate investigation tried.	M1	3.4
	Since the sum is increasing towards $\frac{9}{4}$ which is strictly less than 2.5 T_{n} can never reach 2.5 , so the 2.5 million remaining tonnes of coal will not all be mined no matter how long the company keeps mining.	A1	3.2b
		(2)	
(c)	In the first 20 years $T_{20}=\frac{221}{120}$ million tonnes of coal have been mined, so $2.5-\frac{221}{120}=\frac{79}{120}$ tonnes remain.	M1	2.2b
	Hence $\frac{79}{120 \times 20}$ extra tonnes per year need mining, so the new model is $M_{r}=\frac{79}{2400}+\frac{10}{r^{2}+8 r+15}$.	A1ft	3.5c
		(2)	

Notes:

(a)

M1: Attempts the sum using an appropriate method - ie method of differences. An attempt at partial fractions would evidence the attempt.
B1: Correct split into partial fractions.

M1: Applies method of differences showing evidence of the cancelling terms. The 5 may be missing at this stage and included later.
A1ft: Correct non-cancelling terms identified. Follow through their split into partial fractions if it leads to most terms cancelling.
M1: Puts the terms over a common denominator and simplifies. May be done in stages with the numerical fractions combined first etc, but look for appropriately adapted numerators for their method.
A1: Correct form with $k=4$.
(b)

M1: Investigates the long term behaviour, e.g. by trying large values of n in the expression to see what happens, or by considering the long term limit.
A1: As scheme, comments that since the limit of the sum as $n \rightarrow \infty$ is $9 / 4$ then the total amount of coal mined will never exceed 2.25 million tonnes, and so the coal will not all be mined even after a long time.
(c)

M1: Calculates the shortfall between 2.5 and the value of the sum at $n=20$.
A1ft: Correct adaptation of the model adding (their shortfall)/20 to the original expression.

Alt (a)	Use of induction: Look for an attempt to find the value of k using $n=1$ followed by an attempt at the inductive hypothesis.	M1	3.1a
	$n=1 \Rightarrow \frac{10}{1+8+15}=\frac{9+41}{k(5)(6)} \Rightarrow k=4$	B1	1.1b
	Assume true for $n=p$, so $\begin{aligned} & \sum_{r=1}^{p+1} M_{r}=\frac{9 p^{2}+41 p}{44 "(p+4)(p+5)}+\frac{10}{(p+1)^{2}+8(p+1)+15} \\ & =\frac{9 p^{2}+41 p}{44 "(p+4)(p+5)}+\frac{10}{(p+4)(p+6)} \end{aligned}$	M1	2.1
	$=\frac{\left(9 p^{2}+41 p\right)(p+6)+10 \times 4 "(p+5)}{44 "(p+4)(p+5)(p+6)}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\begin{aligned} & =\frac{9 p^{3}+95 p^{2}+286 p+200}{4(p+4)(p+5)(p+6)}=\frac{(p+4)(p+1)(9 p+50)}{4(p+4)(p+5)(p+6)} \\ & =\frac{(p+1)\left[9(p+1)^{2}+41\right]}{4((p+1)+4)((p+1)+5)} \end{aligned}$ Hence true for $n=1$ (with $k=4$) and if true for $n=p$ then true for $n=p+1$ so true for all positive integers n.	A1	2.1
		(6)	

M1: For use of induction look for an attempt to find the value of k first, followed by an attempt at proving the inductive step.
B1: Deduces $k=4$.
M1: Assumes true for some p and uses their k in the expression for T_{p} (may use k instead of p, which is fine if there is no confusion as they have a value in the expression).
M1: Attempts to combine over a common denominator.
A1ft: Correct single fraction expression, follow through their k.
A1: Completes the induction step and make a suitable conclusion.

