Question	Scheme	Marks	AOs
4(a)	$ w-2 ^2 = (w-2)(w-2)^* = (w-2)(w^*-2)$	M1	1.1b
	$= ww^* - 2w - 2w^* + 4 = w ^2 - 2(w + w^*) + 4$	M1	1.1b
	$= 1 + 4 - 2(w + w^*) = 5 - 2(w + w^*)$ since w is a root of unity so has modulus 1. *	A1*	2.1
		(3)	
Alt	$ w = x + iy \Rightarrow w - 2 ^2 = (x - 2) + iy ^2 = (x - 2)^2 + y^2$	M1	1.1b
	$= x^2 - 4x + 4 + y^2 = x^2 + y^2 + 4 - 2(x + iy + x - iy)$	M1	1.1b
	$=1+4+2(w+w^*)$ since $x^2+y^2=1$ as w is a root of unity. *	A1*	2.1
		(3)	
(b)	$\sum_{i=1}^{7} (XA_i)^2 = \sum_{i=1}^{7} w_i - 2 ^2 \text{ where } w_i \text{ are the } 7^{\text{th}} \text{ roots of unity.}$	M1	3.1a
	$= \sum_{i=1}^{7} \left(5 - 2(w_i + w_i^*)\right) = \sum_{i=1}^{7} 5 - 2\sum_{i=1}^{7} (w_i + w_i^*)$	M1	1.1b
	$\sum_{i=1}^{7} (w_i + w_i^*) = 0 \text{since roots of unity sum to zero.}$	B1	2.2a
	So $\sum_{i=1}^{7} (XA_i)^2 = 7 \times 5 = 35$	A1	1.1b
		(4)	
(7 marks)			
Notes:			
 (a) M1: Uses the given identity and distributivity of the conjugate. M1: Expands and collects terms A1*: Completes the proof with justification of w = 1. Alt M1: Replaces why which is and applied the modulus agreed. 			
M1: Replaces w by $x + iy$ and applied the modulus squared. M1: Expands the brackets and gathers $x^2 + y^2$ (may be implied if $x^2 + y^2 = 1$ stated explicitly) and			
splits the x term (may be implied if $w + w^* = 2x$ stated explicitly).			
A1*: Completes proof convincingly with justification for $x^2 + y^2 = 1$ given.			
M1: Makes the connection with part (a) and translates into a complex plane problem, realising the vertices lie at 7 th roots of unity. M1: Uses the identity shown in (a) and splits the sum. B1: Deduces the second sum is zero as sum of roots of unity is zero. A1: Correct answer.			
A1. Confect allswer.			