5(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sinh ^{2} x+1} \times . .$	M1	1.2
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sinh ^{2} x+1} \times \cosh x$	A1	1.1b
	$=\frac{\cosh x}{\cosh ^{2} x}=\operatorname{sech} x$ or use of correct identity $\sinh ^{2} x+1=\cosh ^{2} x$ later in the proof.	B1	2.1
	E.g. $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\operatorname{sech} x \tanh x$ or $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-(\cosh x)^{-2} \times \sinh x$ or even $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{(\sinh x)\left(\sinh ^{2} x+1\right)-(\cosh x)(2 \sinh x \cosh x)}{\left(\sinh ^{2} x+1\right)^{2}}$	M1	1.1b
	$\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=-(-\operatorname{sech} x \tanh x)(\tanh x)+(-\operatorname{sech} x)\left(\operatorname{sech}^{2} x\right)(\mathrm{oe})$ or any valid attempt at the third derivative from their second derivative. E.g. $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\tanh x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ then $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=-\operatorname{sech}^{2} x \frac{\mathrm{~d} y}{\mathrm{~d} x}-\tanh x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \text { 3.1a } \\ & \text { 1.1b } \end{aligned}$
	$\begin{aligned} & \text { E.g. } \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\operatorname{sech} x \tanh ^{2} x-\operatorname{sech}^{3} x=\operatorname{sech} x\left(1-\operatorname{sech}^{2} x\right)-\operatorname{sech}^{3} x \\ & \quad=\operatorname{sech} x-2 \operatorname{sech}^{3} x=\frac{\mathrm{d} y}{\mathrm{~d} x}-2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{3} * \\ & \text { or } \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=-\operatorname{sech}^{2} x \frac{\mathrm{~d} y}{\mathrm{~d} x}-\tanh x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{3}+\tanh ^{2} x \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & =\left(1-\operatorname{sech}^{2} x\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{3}=\frac{\mathrm{d} y}{\mathrm{~d} x}-2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{3} * \end{aligned}$	A1*	2.1
		(7)	
(b)	$\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2} \times \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\frac{\mathrm{d}^{5} y}{\mathrm{~d} x^{5}}=\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}-12\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \times\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)^{2}-6\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2} \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
		(4)	
(c)	At $x=0, y=0, y^{\prime}=1, y^{\prime \prime}=0, y^{(3)}=-1, y^{(4)}=0$ and $y^{(5)}=-1-1 \times 0^{2}-6 \times 1^{2} \times(-1)=5$	M1	1.1b
	So $y=y(0)+x y^{\prime}(0)+\frac{x^{2}}{2!} y^{\prime \prime}(0)+\frac{x^{3}}{3!} y^{(3)}(0)+\frac{x^{4}}{4!} y^{(4)}(0)+\frac{x^{5}}{5!} y^{(5)}(0)+\ldots$ with their evaluated values.	M1	1.1b
	$y=x-\frac{x^{3}}{6}+\frac{x^{5}}{24}+\ldots$	A1	2.5
		(3)	

Notes:

(a)

M1: Applies correct derivative of arctan(..)
A1: Correct derivative of y.
B1: Uses the identity $1+\sinh ^{2} x=\cosh ^{2} x$ to simplify the expression or anywhere later in their proof.
M1: Attempts the second derivative either using standard results, or quotient rule on unsimplified form.
M1: Simplifies and attempts the third derivative or attempts third derivative before simplifying. May even replace sech x with y^{\prime} in the second derivative before using product rule. Many routes are possible at this stage (but must use product rule, chain rule, quotient rule as appropriate)
A1: A correct third derivative in any form.
A1*: Fully correct work leading to the given answer. Steps should be clear to reach the given answer.
(b)

M1: Differentiates again using the chain rule on the cube term. Constant multiple may be incorrect.
A1: Correct (unsimplified) fourth derivative.
M1: Completes the process of differentiation to reach the $5^{\text {th }}$ derivative.
A1: Correct answer, need not be simplified. Isw after a correct expression.
(c)

M1: Attempts the evaluation of all the derivatives at $x=0$.
M1: Applies the Maclaurin formula with their values. Accept with 3 ! or 6 and with 5! or 120.
A1: Correct series, must start $y=\ldots$ or with $\mathrm{f}(x)=\ldots$ only if this has been defined as being equal to y at some stage in their working.

