Question	Scheme	Marks	AOs
7(a)	$\int_{k}^{8} ((4k^{2} - 1)y - (32k^{2} - k)) dy = \left[(4k^{2} - 1)\frac{y^{2}}{2} - (32k^{2} - k)y \right]_{k}^{8}$ $= (4k^{2} - 1)\frac{8^{2} - k^{2}}{2} - (32k^{2} - k)(8 - k)$	M1	1.1b
	$= \frac{1}{2}(4k^2 - 1)(8 - k)(8 + k) - (32k^2 - k)(8 - k)$ = $\frac{1}{2}(8 - k)((4k^2 - 1)(8 + k) - 2(32k^2 - k))$	M1	3.1a
	$= \frac{1}{2}(8-k)(32k^{2}+4k^{3}-8-k-64k^{2}+2k)$ $= \frac{1}{2}(8-k)(4k^{3}-32k^{2}+k-8)*$	A1*	2.1
		(3)	
(b)	Uses $(\pi)\int x^2 dy$ with both of the curves and adds the results (a complete method to find the volume of the main body piece).	B1	3.1a
	Attempts $\int x^2 dy = \int \frac{y^6}{k^4} dy =$	M1	1.1b
	So $(\pi) \int_{0}^{k} x^2 dy = \frac{(\pi)k^3}{7}$	A1	2.2a
	Attempts second curve $\int x^2 dy = \int \frac{(4k^2 - 1)y - (32k^2 - k)}{-(32 - 4k)} dy =$	M1	1.1b
	$(\pi)\int_{k}^{8} x^{2} dy = \frac{\frac{1}{2}(8-k)\left(4k^{3}-32k^{2}+k-8\right)}{-4(8-k)} = (\pi)\frac{1}{8}\left(8-k+32k^{2}-4k^{3}\right)$	M1	2.1
	So volume of body $= (\pi) \left(\frac{k^3}{7} + \frac{1}{8} \left(8 - k + 32k^2 - 4k^3 \right) \right)$ Or total volume $= (\pi) \left(1 + \frac{k^3}{7} + \frac{1}{8} \left(8 - k + 32k^2 - 4k^3 \right) \right)$	A1	1.1b
	$\frac{dV}{dk} = 0 \Longrightarrow \frac{3k^2}{7} + \frac{1}{8} (1 + 64k - 12k^2) = 0$	M1	3.1a
	$\Rightarrow 60k^2 - 448k + 7 = 0 \Rightarrow k = \dots$	M1	1.1b
	But $k > \frac{1}{2}$ so must be $k = awrt 7.45$ cm	A1	3.2a
		(9)	

(c)	Volume of handle is $\pi r^2 h (= \pi (0.5)^2 \times 4) = \pi$	B1	2.2a	
	So volume of spinning top is			
	$V = \pi \left(1 + \frac{(7.45)^3}{7} + \frac{1}{8} \left(8 - (7.45) + 32(7.45)^2 - 4(7.45)^3 \right) \right) = \dots$	M1	1.1b	
	= awrt 237 cm ³ (3 s.f.)	A1	1.1b	
		(3)		
		(15	marks)	
Notes:				
(a)				
M1: Correc	t attempt at integration and applies the limits.			
M1: Applie remove A1*: Corre sufficie	es completion of the square or expanding and factorising to obtain the factors this factor. es this factor. ct completion, expands and collects terms inside the bracket. No errors see	or $(k-8)$) and	
(h)				
B1: Realise result.	s the needed to find the volume and attempts the formula at for both curves. Note the π is not necessary at all for part (b).	s, adding	; the	
M1: Attem be inco	pts to make x^2 the subject of the first equation and attempts to integrate it. Trect.	Power of	f <i>k</i> may	
A1: Correc M1: Attem denomi	t limits 0 and k applied to deduce the volume in terms of k for this section. pts the integral for top portion of body, make x^2 the subject, including the 3 nator.	32 – 4 <i>k</i> i	n the	
M1: Obtains the result using (a) and cancels the $(8 - k)$ term to achieve a cubic in k.				
A1: Adds the If the v	he results of the integrals to give the volume for the whole spinning top, or olume of the cylinder is incorrect, ignore this term for the accuracy – the n hould all be correct.	just the on-const	body. ant	
M1: Realis stationa	es the need to differentiate the result and set equal to 0 to obtain the x value ary points. Must be a valid attempt at differentiating.	e at any		
M1: Solves	the quadratic (usual rules).			
A1: Correc	t answer, with second root rejected, or comment why this root gives the ma	aximum.		
(c) Allow m	arks for part (c) for the volume if the work is done in part (b).			
BI: Deduce	es correct volume π for the handle. Cylinder formula or use of integration r	nay be u	sed.	
Awaro M1. Substi	1 wherever seen - could be III (b).	formula		
having been the sum of the three sections and including the factor π_{-} handle must be included				
Mav h	so been done in (b)		luucu.	
ivity II			• • •	

A1: Awrt 237cm³ NB if this is given in (b) allow this mark unless a different answer is given in (c), in which case count the answer given in (c) as their answer.