(a) Show that $\frac{d^3y}{dx^3} = \frac{dy}{dx} - 2\left(\frac{dy}{dx}\right)^3$

term in x^5

(b) Hence find
$$\frac{d^5y}{dx^5}$$
 in terms of $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$

(c) Find the Maclaurin series for y, in ascending powers of x, up to and including the

 $y = \arctan(\sinh(x))$