

Figure 2
Figure 2 shows a sketch of the cross-section of a design for a child's spinning top. The top is formed by rotating the region bounded by the y-axis, the curve C_{1}, the curve C_{2}, the line with equation $x=\frac{1}{2}$ and the line with equation $y=12$, through 360° about the y-axis.

The curve C_{1} has equation

$$
y=k^{\frac{2}{3}} x^{\frac{1}{3}} \quad 0 \leqslant x \leqslant k
$$

and the curve C_{2} has equation

$$
y=\frac{32 k^{2}-k-(32-4 k) x^{2}}{4 k^{2}-1} \quad \frac{1}{2} \leqslant x \leqslant k
$$

(a) Show that $\int_{k}^{8}\left(\left(4 k^{2}-1\right) y-\left(32 k^{2}-k\right)\right) \mathrm{d} y=\frac{1}{2}(8-k)\left(4 k^{3}-32 k^{2}+k-8\right)$

Hence find
(b) the value of k that gives the maximum value for the volume of the spinning top,
(c) the maximum volume of the spinning top.

