$$
\begin{gathered}
\text { Scheme } \\
y=\tanh ^{-1}(x) \Rightarrow \tanh y=x \Rightarrow x=\frac{\sinh y}{\cosh y}=\frac{\mathrm{e}^{y}-\mathrm{e}^{-y}}{\mathrm{e}^{y}+\mathrm{e}^{-y}}
\end{gathered}
$$MarksAOs

Note that some candidates only have one variable and reach e.g.

$$
\begin{array}{c|c}
x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}} \text { or } \tanh x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}} & \\
\text { Allow this to score M1A1 } & \mathrm{M} 1 \\
\hline x\left(\mathrm{e}^{2 y}+1\right)=\mathrm{e}^{2 y}-1 \Rightarrow \mathrm{e}^{2 y}(1-x)=1+x \Rightarrow \mathrm{e}^{2 y}=\frac{1+x}{1-x} & \mathrm{~A} 1^{*}
\end{array}
$$

Note that $\mathrm{e}^{2 y}(x-1)+x+1=0$ can be solved as a quadratic in e^{y} :

$$
\begin{gathered}
\mathrm{e}^{y}=\frac{-\sqrt{0-4(x-1)(x+1)}}{2(x-1)}=\frac{-\sqrt{4(1-x)(x+1)}}{2(x-1)}=\frac{2 \sqrt{(1-x)(x+1)}}{2(1-x)} \\
=\frac{\sqrt{(x+1)}}{\sqrt{(1-x)}} \Rightarrow y=\frac{1}{2} \ln \frac{(x+1)}{(1-x)} *
\end{gathered}
$$

Score M1 for an attempt at the quadratic formula to make e^{y} the subject (condone $\pm \sqrt{ } \ldots$) and $\mathbf{A 1}$ * for a correct solution that rejects the positive root at some point and deals with the $(x-1)$ bracket correctly

$$
k=1 \text { or }-1<x<1
$$

(a)

Way 2

$$
\begin{gathered}
\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \Rightarrow x=\tanh \left(\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)\right)=\frac{\mathrm{e}^{\ln \frac{1+x}{1-x}}-1}{\mathrm{e}^{\ln \frac{1+x}{1-x}}+1} \\
x=\frac{\mathrm{e}^{\ln \frac{1+x}{1-x}}-1}{\mathrm{e}^{\ln \frac{1+x}{1-x}}+1}=\frac{\frac{1+x}{1-x}-1}{\frac{1+x}{1-x}+1}=x
\end{gathered}
$$

Hence true, QED, tick etc.
(b)

$2 x=\tanh (\ln \sqrt{2-3 x}) \Rightarrow \tanh ^{-1}(2 x)=\ln \sqrt{2-3 x}$	M1	3.1 a
$\frac{1}{2} \ln \left(\frac{1+2 x}{1-2 x}\right)=\frac{1}{2} \ln (2-3 x) \Rightarrow \frac{1+2 x}{1-2 x}=2-3 x$	M1	2.1
$6 x^{2}-9 x+1=0$	A1	1.1 b
$6 x^{2}-9 x+1=0 \Rightarrow x=\ldots$	M1	1.1 b
$x=\frac{9-\sqrt{57}}{12}$	A1	3.2 a
	$\mathbf{5})$	

	Alternative for first 2 marks of (b)		
	$2 x=\tanh (\ln \sqrt{2-3 x}) \Rightarrow 2 x=\frac{\mathrm{e}^{2 \ln \sqrt{2-3 x}}-1}{\mathrm{e}^{2 \ln \sqrt{2-3 x}}+1}$	M1	3.1 a
	$\Rightarrow \frac{2-3 x-1}{2-3 x+1}=2 x$	M1	2.1

(10 marks)

Notes

(a)

If you come across any attempts to use calculus to prove the result - send to review
M1: Begins the proof by expressing tanh in terms of exponentials and forms an equation in exponentials.
The exponential form can be any of $\frac{\left(\mathrm{e}^{y}-\mathrm{e}^{-y}\right) / 2}{\left(\mathrm{e}^{y}+\mathrm{e}^{-y}\right) / 2}, \frac{\mathrm{e}^{y}-\mathrm{e}^{-y}}{\mathrm{e}^{y}+\mathrm{e}^{-y}}, \frac{\mathrm{e}^{2 y}-1}{\mathrm{e}^{2 y}+1}$
Allow any variables to be used but the final answer must be in terms of \boldsymbol{x}. Allow alternative notation for $\tanh ^{-1} x$ e.g. artanh, arctanh.
A1: Correct expression for " x " in terms of exponentials
M1: Full method to make $\mathrm{e}^{2 " y "}$ the subject of the formula. This must be correct algebra so allow sign errors only.
A1*: Completes the proof by using logs correctly and reaches the printed answer with no errors. Allow e.g. $\frac{1}{2} \ln \left(\frac{x+1}{1-x}\right), \frac{1}{2} \ln \frac{x+1}{1-x}, \frac{1}{2} \ln \left|\frac{x+1}{1-x}\right|$. Need to see $\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ as a conclusion but allow if the proof concludes that $y=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ with y defined as $\tanh ^{-1} x$ earlier.

B1: Correct value for k or writes $-1<x<1$
Way 2
M1: Starts with result, takes tanh of both sides and expresses in terms of exponentials
A1: Correct expression
M1: Eliminates exponentials and logs and simplifies
A1: Correct result (i.e. $x=x$) with conclusion
B1: Correct value for k or writes $-1<x<1$
(b)

M1: Adopts a correct strategy by taking $\tanh ^{-1}$ of both sides
M1: Makes the link with part (a) by replacing $\operatorname{artanh}(2 x)$ with $\frac{1}{2} \ln \left(\frac{1+2 x}{1-2 x}\right)$ and demonstrates the use of the power law of logs to obtain an equation with logs removed correctly.
A1: Obtains the correct 3TQ
M1: Solves their 3TQ using a correct method (see General Guidance - if no working is shown (calculator) and the roots are correct for their quadratic, allow M1)
A1: Correct value with the other solution rejected (accept rejection by omission) so $x=\frac{9 \pm \sqrt{57}}{12}$ scores A0 unless the positive root is rejected

Alternative for first 2 marks of (b)

M1: Adopts a correct strategy by expressing tanh in terms of exponentials
M1: Demonstrates the use of the power law of logs to obtain an equation with logs removed correctly

