Question	Scheme	Marks	AOs
1(a)	$y = \tanh^{-1}(x) \Longrightarrow \tanh y = x \Longrightarrow x = \frac{\sinh y}{\cosh y} = \frac{e^y - e^{-y}}{e^y + e^{-y}}$	M1 A1	2.1 1.1b
-	Note that some candidates only have one variable and reach e.g. $x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \text{ or } \tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$		
	Allow this to score M1A1 $x(e^{2y}+1) = e^{2y}-1 \Longrightarrow e^{2y}(1-x) = 1+x \Longrightarrow e^{2y} = \frac{1+x}{1-x}$	M1	1.1b
-	$e^{2y} = \frac{1+x}{1-x} \Longrightarrow 2y = \ln\left(\frac{1+x}{1-x}\right) \Longrightarrow y = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) *$	A1*	2.1
	Note that $e^{2y}(x-1)+x+1=0$ can be solved as a quadratic in e^{y} : $e^{y} = \frac{-\sqrt{0-4(x-1)(x+1)}}{2(x-1)} = \frac{-\sqrt{4(1-x)(x+1)}}{2(x-1)} = \frac{2\sqrt{(1-x)(x+1)}}{2(1-x)}$ $\sqrt{(x+1)}$ 1, $(x+1)$.		
	$= \frac{\sqrt{(x+1)}}{\sqrt{(1-x)}} \Rightarrow y = \frac{1}{2} \ln \frac{(x+1)}{(1-x)} *$ Score M1 for an attempt at the quadratic formula to make e ^y the subject (condone $\pm \sqrt{\dots}$) and A1* for a correct solution that rejects the positive root at some point and deals with the $(x-1)$ bracket correctly		
-	k = 1 or $-1 < x < 1$	B1 (5)	1.1b
(a) Way 2	$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \Longrightarrow x = \tanh \left(\frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \right) = \frac{e^{\ln \frac{1+x}{1-x}} - 1}{e^{\ln \frac{1+x}{1-x}} + 1}$	M1 A1	2.1 1.1b
	$x = \frac{e^{\ln\frac{1+x}{1-x}} - 1}{e^{\ln\frac{1+x}{1-x}} + 1} = \frac{\frac{1+x}{1-x} - 1}{\frac{1+x}{1-x} + 1} = x$ Hence true, QED, tick etc.	M1 A1	1.1b 2.1
(b)	$2x = \tanh\left(\ln\sqrt{2-3x}\right) \Longrightarrow \tanh^{-1}(2x) = \ln\sqrt{2-3x}$	M1	3.1a
	$\frac{1}{2}\ln\left(\frac{1+2x}{1-2x}\right) = \frac{1}{2}\ln(2-3x) \Longrightarrow \frac{1+2x}{1-2x} = 2-3x$	M1	2.1
	$6x^2 - 9x + 1 = 0$	A1	1.1b
	$6x^2 - 9x + 1 = 0 \Longrightarrow x = \dots$	M1	1.1b
	$x = \frac{9 - \sqrt{57}}{12}$	A1	3.2a
		(5)	

	Alternative for first 2 marks of (b)		
	$2x = \tanh\left(\ln\sqrt{2-3x}\right) \Longrightarrow 2x = \frac{e^{2\ln\sqrt{2-3x}}-1}{e^{2\ln\sqrt{2-3x}}+1}$	M1	3.1a
	$\Rightarrow \frac{2-3x-1}{2-3x+1} = 2x$	M1	2.1
(10 marks)			

Notes

(a) If you come across any attempts to use calculus to prove the result – send to review

M1: Begins the proof by expressing tanh in terms of exponentials and forms an equation in exponentials.

can be any of
$$\frac{\left(e^{y}-e^{-y}\right)/2}{\left(e^{y}+e^{-y}\right)/2}, \ \frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}, \ \frac{e^{2y}-1}{e^{2y}+1}$$

Allow any variables to be used **but the final answer must be in terms of** x. Allow alternative notation for tanh⁻¹x e.g. artanh, arctanh.

A1: Correct expression for "x" in terms of exponentials

M1: Full method to make $e^{2^n y^n}$ the subject of the formula. This must be correct algebra so allow sign errors only.

A1*: Completes the proof by using logs correctly and reaches the printed answer with no errors.

Allow e.g.
$$\frac{1}{2}\ln\left(\frac{x+1}{1-x}\right)$$
, $\frac{1}{2}\ln\frac{x+1}{1-x}$, $\frac{1}{2}\ln\left|\frac{x+1}{1-x}\right|$. Need to see $\tanh^{-1}x = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$ as a conclusion

but allow if the proof concludes that $y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ with y defined as $\tanh^{-1} x$ earlier.

B1: Correct value for k or writes -1 < x < 1

Way 2

M1: Starts with result, takes tanh of both sides and expresses in terms of exponentials

A1: Correct expression

The exponential form

M1: Eliminates exponentials and logs and simplifies

A1: Correct result (i.e. x = x) with conclusion

B1: Correct value for *k* or writes -1 < x < 1

(b)

M1: Adopts a correct strategy by taking tanh-1 of both sides

M1: Makes the link with part (a) by replacing artanh(2x) with $\frac{1}{2}\ln\left(\frac{1+2x}{1-2x}\right)$ and demonstrates the

use of the power law of logs to obtain an equation with logs removed correctly.

A1: Obtains the correct 3TQ

M1: Solves their 3TQ using a correct method (see General Guidance – if no working is shown (calculator) and the roots are correct for their quadratic, allow M1)

A1: Correct value with the other solution rejected (accept rejection by omission) so $x = \frac{9 \pm \sqrt{57}}{12}$

scores A0 unless the positive root is rejected

Alternative for first 2 marks of (b)

M1: Adopts a correct strategy by expressing tanh in terms of exponentials

M1: Demonstrates the use of the power law of logs to obtain an equation with logs removed correctly