Question	Scheme	Marks	AOs
4(a) Way 1	$C + iS = \cos\theta + i\sin\theta + \frac{1}{2}(\cos 5\theta + i\sin 5\theta)\left(+\frac{1}{4}(\cos 9\theta + i\sin 9\theta) +\right)$	M1	1.1b
	$= e^{i\theta} + \frac{1}{2}e^{5i\theta}\left(+\frac{1}{4}e^{9i\theta} + \dots\right)$	A1	2.1
	$\mathbf{C} + \mathbf{i}\mathbf{S} = \frac{\mathbf{e}^{\mathbf{i}\theta}}{1 - \frac{1}{2}\mathbf{e}^{4\mathbf{i}\theta}}$	M1	3.1a
	$=\frac{2e^{i\theta}}{2-e^{4i\theta}}*$	A1*	1.1b
		(4)	
(a) Way 2	$C + iS = \cos\theta + i\sin\theta + \frac{1}{2}(\cos 5\theta + i\sin 5\theta)\left(+\frac{1}{4}(\cos 9\theta + i\sin 9\theta) +\right)$	M1	1.1b
	$C + iS = \cos\theta + i\sin\theta + \frac{1}{2}(\cos\theta + i\sin\theta)^5 \left(+ \frac{1}{4}(\cos\theta + i\sin\theta)^9 + \dots \right)$	A1	2.1
	$C+iS = \frac{\cos\theta + i\sin\theta}{1 - \frac{1}{2}(\cos\theta + i\sin\theta)^4} = \frac{e^{i\theta}}{1 - \frac{1}{2}e^{4i\theta}}$	M1	3.1a
	$=\frac{2\mathrm{e}^{\mathrm{i}\theta}}{2-\mathrm{e}^{4\mathrm{i}\theta}}*$	A1*	1.1b
		(4)	
(b) Way 1	$\frac{2\mathrm{e}^{\mathrm{i}\theta}}{2-\mathrm{e}^{4\mathrm{i}\theta}} \times \frac{2-\mathrm{e}^{-4\mathrm{i}\theta}}{2-\mathrm{e}^{-4\mathrm{i}\theta}}$	M1	3.1a
	$\frac{4e^{i\theta} - 2e^{-3i\theta}}{4 - 2e^{-4i\theta} - 2e^{4i\theta} + 1}$	A1	1.1b
	$\frac{4\cos\theta + 4i\sin\theta - 2\cos 3\theta + 2i\sin 3\theta}{5 - 2\cos 4\theta + 2i\sin 4\theta - 2\cos 4\theta - 2i\sin 4\theta}$ Dependent on the first M	d M1	2.1
	$S = \frac{4\sin\theta + 2\sin 3\theta}{5 - 4\cos 4\theta} *$	A1*	1.1b
		(4)	
(b) Way 2	$\frac{2\mathrm{e}^{\mathrm{i}\theta}}{2-\mathrm{e}^{4\mathrm{i}\theta}} = \frac{2(\cos\theta + \mathrm{i}\sin\theta)}{2-(\cos4\theta + \mathrm{i}\sin4\theta)} \times \frac{2-(\cos4\theta - \mathrm{i}\sin4\theta)}{2-(\cos4\theta - \mathrm{i}\sin4\theta)}$	M1	3.1a
	$\frac{4\cos\theta + 4i\sin\theta - 2\cos\theta\cos4\theta - 2\sin\theta\sin4\theta + 2i\sin4\theta\cos\theta - 2i\sin\theta\cos4\theta}{4 + \cos^24\theta + \sin^24\theta - 4\cos4\theta}$	A1	1.1b
	$\frac{4\cos\theta + 4i\sin\theta - 2\cos 3\theta + 2i\sin 3\theta}{5 - 2\cos 4\theta + 2i\sin 4\theta - 2\cos 4\theta - 2i\sin 4\theta}$ Dependent on the first M	d M1	2.1
	$S = \frac{4\sin\theta + 2\sin 3\theta}{5 - 4\cos 4\theta} *$	A1*	1.1b

(8 marks)

(a)

Way 1

M1: Combines the two series by pairing the multiples of θ (At least up to 5 θ)

A1: Converts to Euler form correctly (At least up to 5θ)

M1: Recognises that C + iS is a convergent geometric series and uses the sum to infinity of a GP

A1*: Reaches the printed answer with no errors

Way 2

M1: Combines the two series by pairing the multiples of θ (At least up to 5 θ)

A1: Converts to power form correctly (At least up to 5θ)

M1: Recognises that C + iS is a convergent geometric series and uses the sum to infinity of a GP

A1*: Reaches the printed answer with no errors

(b)

Way 1

M1: Multiplies numerator and denominator by $2 - e^{-4i\theta}$

A1: Correct fraction in terms of exponentials

dM1: Converts back to trigonometric form

A1*: Reaches the printed answer with no errors

Way 2

M1: Converts back to trigonometric form and realises the need to make the denominator real and multiplies numerator and denominator by the complex conjugate of the denominator which is **correct** for their fraction

A1: Correct fraction in terms of trigonometric functions

dM1: Uses the correct addition formula to obtain sin 3θ in the numerator

A1*: Reaches the printed answer with no errors