Question	Scheme	Marks	AOs
5(a)	$4m^2 + 4m + 37 = 0 \Longrightarrow m = -\frac{1}{2} \pm 3i$	M1	1.1b
	$h = \mathrm{e}^{-0.5t} \left(A \cos 3t + B \sin 3t \right)$	A1	1.1b
		(2)	
(b)	$t = 0, \ h = -20 \Longrightarrow A = -20$	M1	3.4
	$\frac{dh}{dt} = -0.5e^{-0.5t} \left(A\cos 3t + B\sin 3t \right) + e^{-0.5t} \left(-3A\sin 3t + 3B\cos 3t \right)$ $t = 0, \frac{dh}{dt} = 55 \Longrightarrow B = \dots (\text{NB } B = 15)$	M1	3.4
	$(h=)e^{-0.5t}(15\sin 3t - 20\cos 3t)$	A1	1.1b
	$-0.5e^{-0.5t}(15\sin 3t - 20\cos 3t) + e^{-0.5t}(60\sin 3t + 45\cos 3t) = 0$		
	$-0.5e^{-0.5t} (15\sin 3t - 20\cos 3t) + \frac{25\sqrt{37}}{2}e^{-0.5t} \sin\left(3t + \arctan\frac{22}{21}\right) = 0$ $\implies t = \dots$	M1	3.1b
	$\tan 3t = -\frac{22}{21}$ or e.g. $3t + \tan^{-1}\frac{22}{21} = 0$	A1 M1 on ePEN	2.1
	t = 0.778 s	A1	1.1b
	$h = e^{-0.5 \times "0.778"} \left(15 \sin \left(3 \times "0.778" \right) - 20 \cos \left(3 \times "0.778" \right) \right)$	d M1	1.1b
	= 16.7 cm	A1	3.2a
		(8)	
(c)	E.g. considers large values of <i>t</i> in the model for <i>h</i> or states that for large values of <i>t</i> , <i>h</i> becomes smaller or becomes zero	M1	3.4
	 E.g. The value of <i>h</i> is very small when <i>t</i> is large and this is likely to be correct (as the displacement of end of the board should get smaller and smaller) This suggests the model is suitable This is realistic This is suitable as the board will tend towards its equilibrium position When <i>t</i> is large the value of <i>h</i> is never zero so the model is not really appropriate for large values of <i>t</i> 	A1 B1 on ePEN	3.2b
		(2)	. .
(12 marks			
M1: Uses the model to form and solve the auxiliary equation $4m^2 + 4m + 37 = 0$ See General Guidance for awarding this mark. This can be implied by correct values for <i>m</i> (from calculator) A1: Correct general solution including " <i>h</i> =" (b)			

- M1: Uses the model and the initial conditions to establish the value of "A". Need to see t = 0 and $h = \pm 20$ leading to a value for "A". This may be implied by A = -20 or A = 20.
- M1: Differentiates their model using the product rule and uses the initial conditions, t = 0 with $dh/dt = \pm 55$, to establish the value of "B"
- A1: Correct particular solution or correct values for A and B
- M1: Uses their solution to the model with a correct strategy to obtain a value for *t* e.g.
- differentiates or uses their derivative from earlier, sets equal to zero and solves for t
- A1(M1 on ePEN): Correct equation for t
- A1: Correct value for t (allow awrt 0.778 if necessary) but this value may be implied.
- dM1: Uses the model and their **positive** value for t to find the maximum displacement if their t is incorrect there must be some indication that they are using their h and not just a number written down. E.g. must see substitution into their h or they re-state their h and obtain a value for h.

Dependent on all the previous method marks

- A1: Correct value (awrt 16.7 (units not needed))
- (c)

M1: Considers the model for large values of *t* either by substituting values or by considering the expression and commenting on its behaviour for large values of *t*. E.g. as $t \to \infty$, $h \to 0$ or as

 $t \to \infty$, $e^{-0.5t} \to 0$ or as $t \to \infty$ the oscillations become smaller etc.

A1: Makes a suitable comment – see scheme for examples