Question	Scheme	Marks	AOs
5(a)	$4 m^{2}+4 m+37=0 \Rightarrow m=-\frac{1}{2} \pm 3 \mathrm{i}$	M1	1.1b
	$h=\mathrm{e}^{-0.5 t}(A \cos 3 t+B \sin 3 t)$	A1	1.1b
		(2)	
(b)	$t=0, h=-20 \Rightarrow A=-20$	M1	3.4
	$\begin{gathered} \frac{\mathrm{d} h}{\mathrm{~d} t}=-0.5 \mathrm{e}^{-05 t}(A \cos 3 t+B \sin 3 t)+\mathrm{e}^{-05 t}(-3 A \sin 3 t+3 B \cos 3 t) \\ t=0, \frac{\mathrm{~d} h}{\mathrm{~d} t}=55 \Rightarrow B=\ldots(\mathrm{NB} B=15) \end{gathered}$	M1	3.4
	$(h=) \mathrm{e}^{-0.5 t}(15 \sin 3 t-20 \cos 3 t)$	A1	1.1b
	$\begin{gathered} -0.5 \mathrm{e}^{-05 t}(15 \sin 3 t-20 \cos 3 t)+\mathrm{e}^{-05 t}(60 \sin 3 t+45 \cos 3 t)=0 \\ \text { or e.g. } \\ -0.5 \mathrm{e}^{-05 t}(15 \sin 3 t-20 \cos 3 t)+\frac{25 \sqrt{37}}{2} \mathrm{e}^{-05 t} \sin \left(3 t+\arctan \frac{22}{21}\right)=0 \\ \Rightarrow t=\ldots \end{gathered}$	M1	3.16
	$\tan 3 t=-\frac{22}{21} \text { or e.g. } 3 t+\tan ^{-1} \frac{22}{21}=0$	$\begin{gathered} \text { A1 } \\ \text { M1 } \\ \text { on } \\ \text { ePEN } \end{gathered}$	2.1
	$t=0.778 \mathrm{~s}$	A1	1.1b
	$h=\mathrm{e}^{-0.5 \times " 0.778 "}\left(15 \sin \left(3 \times\right.\right.$ "0.778") $\left.-20 \cos \left(3 \times 10.778^{\prime \prime}\right)\right)$	dM1	1.1b
	$=16.7 \mathrm{~cm}$	A1	3.2a
		(8)	
(c)	E.g. considers large values of t in the model for h or states that for large values of t, h becomes smaller or becomes zero	M1	3.4
	E.g. - The value of h is very small when t is large and this is likely to be correct (as the displacement of end of the board should get smaller and smaller) - This suggests the model is suitable - This is realistic - This is suitable as the board will tend towards its equilibrium position - When t is large the value of h is never zero so the model is not really appropriate for large values of t	A1 B1 on ePEN	3.2b
		(2)	

(12 marks)

Notes

(a)

M1: Uses the model to form and solve the auxiliary equation $4 m^{2}+4 m+37=0$
See General Guidance for awarding this mark. This can be implied by correct values for m (from calculator)
A1: Correct general solution including " $h=$ "
(b)

M1: Uses the model and the initial conditions to establish the value of " A ". Need to see $t=0$ and $h= \pm 20$ leading to a value for " A ". This may be implied by $A=-20$ or $A=20$.
M1: Differentiates their model using the product rule and uses the initial conditions, $t=0$ with $\mathrm{d} h / \mathrm{d} t= \pm 55$, to establish the value of " B "
A1: Correct particular solution or correct values for A and B
M1: Uses their solution to the model with a correct strategy to obtain a value for t e.g.
differentiates or uses their derivative from earlier, sets equal to zero and solves for t
A1(M1 on ePEN): Correct equation for t
A1: Correct value for t (allow awrt 0.778 if necessary) but this value may be implied.
dM1: Uses the model and their positive value for t to find the maximum displacement - if their t
is incorrect there must be some indication that they are using their h and not just a number written down. E.g. must see substitution into their h or they re-state their h and obtain a value for h.
Dependent on all the previous method marks
A1: Correct value (awrt 16.7 (units not needed))
(c)

M1: Considers the model for large values of t either by substituting values or by considering the expression and commenting on its behaviour for large values of t. E.g. as $t \rightarrow \infty, h \rightarrow 0$ or as
$t \rightarrow \infty, e^{-05 t} \rightarrow 0$ or as $t \rightarrow \infty$ the oscillations become smaller etc.
A1: Makes a suitable comment - see scheme for examples

