Question	Scheme	Marks	AOs
6(a)	Examples: $ \begin{pmatrix} \cos 120 & -\sin 120 \\ \sin 120 & \cos 120 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \dots \text{ or } (6+2i) \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i \right) $ or $\sqrt{40} \left(\cos \arctan\left(\frac{2}{6}\right) + i \sin \arctan\left(\frac{2}{6}\right) \right) \left(\cos\left(\frac{2\pi}{3}\right) + i \sin\left(\frac{2\pi}{3}\right) \right) $ or $\sqrt{40} \left(\cos\left(\arctan\left(\frac{2}{6}\right) + \frac{2\pi}{3}\right) + i \sin\left(\arctan\left(\frac{2}{6}\right) + \frac{2\pi}{3}\right) \right) $ or $\sqrt{40} e^{i \arctan\left(\frac{2}{6}\right) + \frac{2\pi}{3}} $	M1	3.1a
	$(-3-\sqrt{3})$ or $(3\sqrt{3}-1)i$	Al	1.1b
	$(-3-\sqrt{3})+(3\sqrt{3}-1)i$	Al	1.1b
	Examples: $\begin{pmatrix} \cos 240 & -\sin 240 \\ \sin 240 & \cos 240 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \dots \text{ or } (6+2i) \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i \right)$ or $\sqrt{40} \left(\cos \arctan\left(\frac{2}{6}\right) + i \sin \arctan\left(\frac{2}{6}\right) \right) \left(\cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) \right)$ or $\sqrt{40} \left(\cos\left(\arctan\left(\frac{2}{6}\right) + \frac{4\pi}{3}\right) + i \sin\left(\arctan\left(\frac{2}{6}\right) + \frac{4\pi}{3}\right) \right)$ or $\sqrt{40}e^{i \arctan\left(\frac{2}{6}\right)}e^{i \left(\frac{4\pi}{3}\right)}$	M1	3.1a
	$(-3+\sqrt{3})$ or $(-3\sqrt{3}-1)i$	A1	1.1b
	$\left(-3+\sqrt{3}\right)+\left(-3\sqrt{3}-1\right)i$	A1	1.1b
		(6)	
(b) Way 1	Area $ABC = 3 \times \frac{1}{2} \sqrt{6^2 + 2^2} \sqrt{6^2 + 2^2} \sin 120^\circ$ or Area $AOB = \frac{1}{2} \sqrt{6^2 + 2^2} \sqrt{6^2 + 2^2} \sin 120^\circ$	M1	2.1
	Area $DEF = \frac{1}{4}ABC$ or $\frac{3}{4}AOB$	dM1	3.1a
	$=\frac{3}{8} \times 40 \times \frac{\sqrt{3}}{2} = \frac{15\sqrt{3}}{2}$	Al	1.1b
		(3)	0 = 21

(b) Way 2	$D\left(\frac{3-\sqrt{3}}{2},\frac{3\sqrt{3}+1}{2}\right)$		
	$OD = \sqrt{\left(\frac{3-\sqrt{3}}{2}\right)^2 + \left(\frac{3\sqrt{3}+1}{2}\right)^2} = \sqrt{10}$	M1	2.1
	Area $DOF = \frac{1}{2}\sqrt{10}\sqrt{10}\sin 120^\circ$		
1	Area $DEF = 3DOF$	dM1	3.1a
	$= 3 \times \frac{1}{2} \times \sqrt{10} \sqrt{10} \times \frac{\sqrt{3}}{2} = \frac{15\sqrt{3}}{2}$	A1	1.1b
(b) Way 3	$AB = \sqrt{\left(9 + \sqrt{3}\right)^2 + \left(3 - 3\sqrt{3}\right)^2} = \sqrt{120}$ Area $ABC = \frac{1}{2}\sqrt{120}\sqrt{120}\sin 60^\circ \left(=30\sqrt{3}\right)$	M1	2.1
	Area $DEF = \frac{1}{4}ABC$	dM1	3.1a
	$=\frac{1}{4}\times 30\sqrt{3}=\frac{15\sqrt{3}}{2}$	A1	1.1b
(b) Way 4	$D\left(\frac{3-\sqrt{3}}{2},\frac{3\sqrt{3}+1}{2}\right), E(-3,-1), F\left(\frac{3+\sqrt{3}}{2},\frac{-3\sqrt{3}+1}{2}\right)$ $DE = \sqrt{\left(\frac{3-\sqrt{3}}{2}+3\right)^2 + \left(\frac{3\sqrt{3}+1}{2}+1\right)^2} \left(=\sqrt{30}\right)$	M1 dM1	2.1 3.1a
-	Area $DEF = \frac{1}{2}\sqrt{30}\sqrt{30}\sin 60^\circ$ $15\sqrt{3}$		1.11
	= 2	AI	1.10
(b) Way 5	Area $ABC = \frac{1}{2} \begin{vmatrix} 6 & -3 - \sqrt{3} & \sqrt{3} - 3 & 6 \\ 2 & 3\sqrt{3} - 1 & -3\sqrt{3} - 1 & 2 \end{vmatrix} = 30\sqrt{3}$	M1	2.1
	Area $DEF = \frac{1}{4}ABC$	dM1	3.1a
	$=\frac{1}{4}\times 30\sqrt{3}=\frac{15\sqrt{3}}{2}$	A1	1.1b
		(9	marks)
	Notes		
(a) M1: Identif May see eq by $\cos \frac{2\pi}{3}$	fies a suitable method to rotate the given point by 120° (or equivalent puivalent work with modulus/argument or exponential form e.g. an at $+i\sin\frac{2\pi}{3}$ or $e^{\frac{2\pi}{3}i}$) about the tempt to m	e origin. ultiply
A1: Compl	letely correct complex number fies a suitable method to rotate the given point by 240° (or equivalent	e o rotate	their R

by 120°) about the origin

May see equivalent work with modulus/argument or exponential form e.g. an attempt to multiply 6 + 2i by $\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$ or $e^{\frac{4\pi}{3}i}$ or their *B* by $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ or $e^{\frac{2\pi}{3}i}$

A1: Correct real part or correct imaginary part

A1: Completely correct complex number

(b)

In general, the marks in (b) should be awarded as follows:

M1: Attempts to find the area of a relevant triangle

dM1: completes the problem by multiplying by an appropriate factor to find the area of *DEF*

Dependent on the first method mark

A1: Correct exact area

In some cases it may not be possible to distinguish the 2 method marks. In such cases they can be awarded together for a direct method that finds the area of *DEF*

Examples:

Way 1

M1: A correct strategy for the area of a relevant triangle such as ABC or AOB

dM1: Completes the problem by linking the area of *DEF* correctly with *ABC* or with *AOB* A1: Correct value

Way 2

M1: A correct strategy for the area of a relevant triangle such as *DOF*

dM1: Completes the problem by linking the area of *DEF* correctly with *DOF*

A1: Correct value

Way 3

M1: A correct strategy for the area of a relevant triangle such as *ABC*

dM1: Completes the problem by linking the area of DEF correctly with ABC

A1: Correct value

Way 4

M1**d**M1: A correct strategy for the area of *DEF*. Finds 2 midpoints and attempts one side of *DEF* and uses a correct triangle area formula. By implication this scores both M marks. A1: Correct value

Way 5

M1: A correct strategy for the area of ABC using the "shoelace" method.

dM1: Completes the problem by linking the area of DEF correctly with ABC

A1: Correct value

Note the marks in (b) can be scored using inexact answers from (a) and the A1 scored if an exact area is obtained.

