Question	Scheme	Marks	AOs
6(a)	$\begin{gathered} \text { Examples: } \\ \left(\begin{array}{cc} \cos 120 & -\sin 120 \\ \sin 120 & \cos 120 \end{array}\right)\binom{6}{2}=\ldots \text { or }(6+2 \mathrm{i})\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} \mathrm{i}\right) \\ \text { or } \sqrt{40}\left(\cos \arctan \left(\frac{2}{6}\right)+\mathrm{i} \sin \arctan \left(\frac{2}{6}\right)\right)\left(\cos \left(\frac{2 \pi}{3}\right)+\mathrm{i} \sin \left(\frac{2 \pi}{3}\right)\right) \\ \text { or } \\ \sqrt{40}\left(\cos \left(\arctan \left(\frac{2}{6}\right)+\frac{2 \pi}{3}\right)+\mathrm{i} \sin \left(\arctan \left(\frac{2}{6}\right)+\frac{2 \pi}{3}\right)\right) \\ \text { or } \\ \sqrt{40} \mathrm{e}^{\mathrm{i} \arctan \left(\frac{2}{6}\right)} \mathrm{e}^{\mathrm{i}\left(\frac{2 \pi}{3}\right)} \end{gathered}$	M1	3.1a
	$(-3-\sqrt{3})$ or $(3 \sqrt{3}-1) \mathrm{i}$	A1	1.1b
	$(-3-\sqrt{3})+(3 \sqrt{3}-1) \mathrm{i}$	A1	1.1 b
	Examples: $\left(\begin{array}{cc} \cos 240 & -\sin 240 \\ \sin 240 & \cos 240 \end{array}\right)\binom{6}{2}=\ldots \text { or }(6+2 \mathrm{i})\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{i}\right)$ or $\sqrt{40}\left(\cos \arctan \left(\frac{2}{6}\right)+i \sin \arctan \left(\frac{2}{6}\right)\right)\left(\cos \left(\frac{4 \pi}{3}\right)+i \sin \left(\frac{4 \pi}{3}\right)\right)$ or $\sqrt{40}\left(\cos \left(\arctan \left(\frac{2}{6}\right)+\frac{4 \pi}{3}\right)+\mathrm{i} \sin \left(\arctan \left(\frac{2}{6}\right)+\frac{4 \pi}{3}\right)\right)$ or $\sqrt{40} \mathrm{e}^{\mathrm{iarctan}\left(\frac{2}{8}\right)} \mathrm{e}^{\mathrm{i}\left(\frac{4 \pi}{3}\right)}$	M1	3.1a
	$(-3+\sqrt{3})$ or $(-3 \sqrt{3}-1) \mathrm{i}$	A1	1.1b
	$(-3+\sqrt{3})+(-3 \sqrt{3}-1) \mathrm{i}$	A1	1.1 b
		(6)	
(b) Way 1	$\begin{aligned} & \text { Area } A B C=3 \times \frac{1}{2} \sqrt{6^{2}+2^{2}} \sqrt{6^{2}+2^{2}} \sin 120^{\circ} \\ & \text { or } \\ & \text { Area } A O B=\frac{1}{2} \sqrt{6^{2}+2^{2}} \sqrt{6^{2}+2^{2}} \sin 120^{\circ} \end{aligned}$	M1	2.1
	Area $D E F=\frac{1}{4} A B C$ or $\frac{3}{4} A O B$	dM1	3.1a
	$=\frac{3}{8} \times 40 \times \frac{\sqrt{3}}{2}=\frac{15 \sqrt{3}}{2}$	A1	1.1b
		(3)	

$\begin{gathered} \text { (b) } \\ \text { Way } 2 \end{gathered}$	$\begin{gathered} D\left(\frac{3-\sqrt{3}}{2}, \frac{3 \sqrt{3}+1}{2}\right) \\ O D=\sqrt{\left(\frac{3-\sqrt{3}}{2}\right)^{2}+\left(\frac{3 \sqrt{3}+1}{2}\right)^{2}}=\sqrt{10} \\ \text { Area } D O F=\frac{1}{2} \sqrt{10} \sqrt{10} \sin 120^{\circ} \end{gathered}$	M1	2.1
	Area $D E F=3 D O F$	dM1	3.1a
	$=3 \times \frac{1}{2} \times \sqrt{10} \sqrt{10} \times \frac{\sqrt{3}}{2}=\frac{15 \sqrt{3}}{2}$	A1	1.1b
$\begin{gathered} \text { (b) } \\ \text { Way } 3 \end{gathered}$	$\begin{aligned} & A B=\sqrt{(9+\sqrt{3})^{2}+(3-3 \sqrt{3})^{2}}=\sqrt{120} \\ & \text { Area } A B C=\frac{1}{2} \sqrt{120} \sqrt{120} \sin 60^{\circ}(=30 \sqrt{3}) \end{aligned}$	M1	2.1
	Area $D E F=\frac{1}{4} A B C$	dM1	3.1a
	$=\frac{1}{4} \times 30 \sqrt{3}=\frac{15 \sqrt{3}}{2}$	A1	1.1b
(b) Way 4	$\begin{gathered} D\left(\frac{3-\sqrt{3}}{2}, \frac{3 \sqrt{3}+1}{2}\right), E(-3,-1), F\left(\frac{3+\sqrt{3}}{2}, \frac{-3 \sqrt{3}+1}{2}\right) \\ D E=\sqrt{\left(\frac{3-\sqrt{3}}{2}+3\right)^{2}+\left(\frac{3 \sqrt{3}+1}{2}+1\right)^{2}(=\sqrt{30})} \\ \text { Area } D E F=\frac{1}{2} \sqrt{30} \sqrt{30} \sin 60^{\circ} \end{gathered}$	M1 dM1	2.1 3.1a
	$=\frac{15 \sqrt{3}}{2}$	A1	1.1b
$\begin{gathered} \text { (b) } \\ \text { Way } 5 \end{gathered}$	Area $A B C=\frac{1}{2}\left\|\begin{array}{cccc}6 & -3-\sqrt{3} & \sqrt{3}-3 & 6 \\ 2 & 3 \sqrt{3}-1 & -3 \sqrt{3}-1 & 2\end{array}\right\|=30 \sqrt{3}$	M1	2.1
	Area $D E F=\frac{1}{4} A B C$	dM1	3.1a
	$=\frac{1}{4} \times 30 \sqrt{3}=\frac{15 \sqrt{3}}{2}$	A1	1.1b

(9 marks)

Notes

(a)

M1: Identifies a suitable method to rotate the given point by 120° (or equivalent) about the origin. May see equivalent work with modulus/argument or exponential form e.g. an attempt to multiply by $\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}$ or $\mathrm{e}^{\frac{2 \pi i}{3 i}}$
A1: Correct real part or correct imaginary part
Al: Completely correct complex number
M1: Identifies a suitable method to rotate the given point by 240° (or equivalent e.g. rotate their B by 120°) about the origin

May see equivalent work with modulus/argument or exponential form e.g. an attempt to multiply $6+2 \mathrm{i}$ by $\cos \frac{4 \pi}{3}+\mathrm{i} \sin \frac{4 \pi}{3}$ or $\mathrm{e}^{\frac{4 \pi \mathrm{i}}{3}}$ or their B by $\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}$ or $\mathrm{e}^{\frac{2 \pi \mathrm{i}}{3}}$
A1: Correct real part or correct imaginary part
A1: Completely correct complex number
(b)

In general, the marks in (b) should be awarded as follows:
M1: Attempts to find the area of a relevant triangle
$\mathbf{d M} 1$: completes the problem by multiplying by an appropriate factor to find the area of $D E F$

Dependent on the first method mark

A1: Correct exact area
In some cases it may not be possible to distinguish the 2 method marks. In such cases they can be awarded together for a direct method that finds the area of $D E F$

Examples:

Way 1

M1: A correct strategy for the area of a relevant triangle such as $A B C$ or $A O B$
dM1: Completes the problem by linking the area of $D E F$ correctly with $A B C$ or with $A O B$
A1: Correct value
Way 2
M1: A correct strategy for the area of a relevant triangle such as $D O F$
dM1: Completes the problem by linking the area of $D E F$ correctly with $D O F$
A1: Correct value

Way 3

M1: A correct strategy for the area of a relevant triangle such as $A B C$
$\mathbf{d M 1}$: Completes the problem by linking the area of $D E F$ correctly with $A B C$
A1: Correct value

Way 4

M1dM1: A correct strategy for the area of $D E F$. Finds 2 midpoints and attempts one side of $D E F$ and uses a correct triangle area formula. By implication this scores both M marks.
A1: Correct value
Way 5
M1: A correct strategy for the area of $A B C$ using the "shoelace" method.
$\mathbf{d M 1}$: Completes the problem by linking the area of $D E F$ correctly with $A B C$
A1: Correct value

Note the marks in (b) can be scored using inexact answers from (a) and the A1 scored if an exact area is obtained.

