Question	Scheme	Marks	AOs
7(a)	$ \mathbf{M} = 2(-k-8)+1(-3-12)+1(6-3k) = 0 \Longrightarrow k =$	M1	1.1b
	$k \neq -5$	A1	2.4
		(2)	
(b) Way 1	$\mathbf{M} = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -6 & 4 \\ 3 & 2 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} p \\ 1 \\ 0 \end{pmatrix}$	M1	3.1a
	$\mathbf{M}^{-1} = \frac{1}{5} \begin{pmatrix} -2 & 1 & 2\\ 15 & -5 & -5\\ 24 & -7 & -9 \end{pmatrix}$	B1	1.1b
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -2 & 1 & 2 \\ 15 & -5 & -5 \\ 24 & -7 & -9 \end{pmatrix} \begin{pmatrix} p \\ 1 \\ 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots $	M1	2.1
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -2p+1 \\ 15p-5 \\ 24p-7 \end{pmatrix} $	A1	1.1b
	$\left(\frac{-2p+1}{5}, \ 3p-1, \frac{24p-7}{5}\right)$	Alft	2.5
		(5)	
(b) Way 2	2x - y + z = p $3x - 6y + 4z = 1 \implies \text{e.g.} \begin{cases} 8y - 5z = -1 \\ 9y - 5z = 3p - 2 \end{cases} \implies y = \dots$ 3x + 2y - z = 0 $\implies x = \dots, z = \dots$	M1	3.1a
	$y = 3p - 1$ (or $x = \frac{-2p + 1}{5}$ or $z = \frac{24p - 7}{5}$)	B1	1.1b
	$8(3p-1)-5z=-1 \Longrightarrow z=\Longrightarrow x=$	M1	2.1
	$z = \frac{24p - 7}{5}, \ x = \frac{-2p + 1}{5}$	A1	1.1b
	$\left(\frac{-2p+1}{5}, \ 3p-1, \frac{24p-7}{5}\right)$	Alft	2.5

(c)(i)	For consistency:	M1	2.1	
	E.g. $5x + y = 4 - q$ and $15x + 3y = q$	M1	3.1a	
	$4 - q = \frac{q}{3} \Longrightarrow q = \dots$	M1	2.1	
	<i>q</i> = 3	A1	1.1b	
	Alternative for (c)(i):			
	$x = 1 \Longrightarrow 2 - y + z = 1, 3 + 2y - z = 0 \Longrightarrow y =, z =$			
	M1 for allocating a number to one variable and solves for the other 2 $x = 1, y = -4, z = -5 \implies 3 + 20 - 20 = q$			
	M1 substitutes into the second equation and solves for q A1: $q = 3$			
(ii)	Three planes that intersect in a line			
(11)	Or	B1	2.4	
	Three planes that form a sheaf allow sheath !	DI	2.7	
		(4)		
		(11	marks)	
	Notes			
M1: Attempts determinant, equates to zero and attempts to solve for <i>k</i> in order to establish the restriction for <i>k</i> . For the determinant, at least 2 of the 3 "elements" should be correct. May see rule of Sarrus used for determinant e.g. $ \mathbf{M} = (2)(k)(-1) + (4)(3)(-1) + (3)(2)(1) - (3)(k)(-1) - (2)(4)(2) - (-1)(3)(-1) = 0 \Rightarrow k =$ A1: Describes the correct condition for <i>k</i> with no contradictions. Allow e.g. $k < -5$, $k > -5$ (b) Way 1 M1: A complete strategy for solving the given equations. Need to see an attempt at the inverse followed by a correct method for finding <i>x</i> , <i>y</i> and <i>z</i> B1: Correct inverse matrix M1: Uses their inverse and attempts the multiplication with the correct vector A1: Correct values for <i>x</i> , <i>y</i> and <i>z</i> in any form A1ft: Correct values given in coordinate form only. Follow through their x , <i>y</i> and <i>z</i> . Way 2 M1: A complete strategy for solving the given equations. Need to see an attempt at eliminating one variable followed by a correct method for finding <i>x</i> , <i>y</i> and <i>z</i> B1: One correct values for solving the given equations. Need to see an attempt at eliminating one variable followed by a correct method for finding <i>x</i> , <i>y</i> and <i>z</i> . B1: One correct value M1: Uses the equations to find values for the other 2 variables A1: Correct values for <i>x</i> , <i>y</i> and <i>z</i> in any form A1ft: Correct values for <i>x</i> , <i>y</i> and <i>z</i> in any form A1ft: Correct values for <i>x</i> , <i>y</i> and <i>z</i> in any form A1ft: Correct values for <i>x</i> , <i>y</i> and <i>z</i> in any form A1ft: Correct values for <i>x</i> , <i>y</i> and <i>z</i> in any form A1ft: Correct values for <i>x</i> , <i>y</i> and <i>z</i> in any form A1ft: Correct values for <i>x</i> , <i>y</i> and <i>z</i> in any form A1ft: Correct values given in coordinate form only. Follow through their <i>x</i> , <i>y</i> and <i>z</i> .				
 (c)(i) M1: Uses a correct strategy that will lead to establishing a value for q. E.g. eliminating one of x, y or z M1: Solves a suitable equation to obtain a value for q A1: Correct value (ii) B1: Describes the correct geometrical configuration. Must include the two ideas of planes and meeting in a line or forming a sheaf with no 				

Must include the **two** ideas of **planes** and meeting in a **line** or forming a **sheaf** with no contradictory statements.