Question	Scheme	Marks	AOs
7(a)	$\|\mathbf{M}\|=2(-k-8)+1(-3-12)+1(6-3 k)=0 \Rightarrow k=\ldots$	M1	1.1b
	$k \neq-5$	A1	2.4
		(2)	
(b) Way 1	$\mathbf{M}=\left(\begin{array}{rrr}2 & -1 & 1 \\ 3 & -6 & 4 \\ 3 & 2 & -1\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\mathbf{M}^{-1}\left(\begin{array}{l}p \\ 1 \\ 0\end{array}\right)$	M1	3.1a
	$\mathbf{M}^{-1}=\frac{1}{5}\left(\begin{array}{rrc}-2 & 1 & 2 \\ 15 & -5 & -5 \\ 24 & -7 & -9\end{array}\right)$	B1	1.1b
	$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{5}\left(\begin{array}{rrr}-2 & 1 & 2 \\ 15 & -5 & -5 \\ 24 & -7 & -9\end{array}\right)\left(\begin{array}{l}p \\ 1 \\ 0\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\ldots$	M1	2.1
	$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{5}\left(\begin{array}{l}-2 p+1 \\ 15 p-5 \\ 24 p-7\end{array}\right)$	A1	1.1b
	$\left(\frac{-2 p+1}{5}, 3 p-1, \frac{24 p-7}{5}\right)$	A1ft	2.5
		(5)	
(b) Way 2	$\begin{aligned} 2 x-y+z=p \\ 3 x-6 y+4 z=1 \\ 3 x+2 y-z=0 \end{aligned} \quad \Rightarrow \text { e.g. } \begin{aligned} & 8 y-5 z=-1 \\ & 9 y-5 z=3 p-2 \\ & \\ & \Rightarrow x=\ldots, z=\ldots \end{aligned} \Rightarrow y=\ldots$	M1	3.1a
	$y=3 p-1\left(\right.$ or $x=\frac{-2 p+1}{5}$ or $\left.z=\frac{24 p-7}{5}\right)$	B1	1.1b
	$8(3 p-1)-5 z=-1 \Rightarrow z=\ldots \Rightarrow x=\ldots$	M1	2.1
	$z=\frac{24 p-7}{5}, x=\frac{-2 p+1}{5}$	A1	1.1b
	$\left(\frac{-2 p+1}{5}, 3 p-1, \frac{24 p-7}{5}\right)$	A1ft	2.5

(c)(i)	For consistency: E.g. $5 x+y=4-q$ and $15 x+3 y=q$	M1	3.1a
		M1	2.1
	q	A1	1.1b
	Alternative for (c)(i): $x=1 \Rightarrow 2-y+z=1,3+2 y-z=0 \Rightarrow y=\ldots, z=\ldots$ M1 for allocating a number to one variable and solves for the other 2 $x=1, y=-4, z=-5 \Rightarrow 3+20-20=q$ M1 substitutes into the second equation and solves for q $\mathrm{A} 1: q=3$		
(ii)	Three planes that intersect in a line Or Three planes that form a sheaf allow sheath!	B1	2.4
1 marks)			
Notes			
(a) M1: Attempts determinant, equates to zero and attempts to solve for k in order to establish the restriction for k. For the determinant, at least 2 of the 3 "elements" should be correct. May see rule of Sarrus used for determinant e.g. $\|\mathbf{M}\|=(2)(k)(-1)+(4)(3)(-1)+(3)(2)(1)-(3)(k)(-1)-(2)(4)(2)-(-1)(3)(-1)=0 \Rightarrow k=\ldots$ A1: Describes the correct condition for k with no contradictions. Allow e.g. $k<-5, k>-5$ (b)Way 1 M1: A complete strategy for solving the given equations. Need to see an attempt at the inverse followed by a correct method for finding x, y and z B1: Correct inverse matrix M1: Uses their inverse and attempts the multiplication with the correct vector A1: Correct values for x, y and z in any form A1ft: Correct values given in coordinate form only. Follow through their $\boldsymbol{x}, \boldsymbol{y}$ and z. Way 2 M1: A complete strategy for solving the given equations. Need to see an attempt at eliminating one variable followed by a correct method for finding x, y and z B1: One correct value M1: Uses the equations to find values for the other 2 variables A1: Correct values for x, y and z in any form Alft: Correct values given in coordinate form only. Follow through their $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z}. (c)(i) M1: Uses a correct strategy that will lead to establishing a value for q. E.g. eliminating one of x, y or z M1: Solves a suitable equation to obtain a value for q A1: Correct value (ii) B1: Describes the correct geometrical configuration. Must include the two ideas of planes and meeting in a line or forming a sheaf with no contradictory statements.			

