Question	Scheme	Marks	AOs
8 (a)	<i>k</i> = 2.6	B1	3.4
		(1)	
(b)	$x = 1.18 \Longrightarrow \ln(3.6 \times 1.18 - "2.6") =$	M1	1.1b
	h = 0.4995 m	A1	2.2b
		(2)	
(c)	$y = \ln(3.6x - 2.6) \Rightarrow x = \frac{e^y + 2.6}{3.6} \text{ or } \frac{5e^y + 13}{18}$	B1ft	1.1a
	$V = \pi \int \left(\frac{e^{y} + 2.6}{3.6}\right)^{2} dy = \frac{\pi}{3.6^{2}} \int \left(e^{2y} + 5.2e^{y} + 6.76\right) dy$	M1	3.3
	or $\frac{\pi}{324} \int (25e^{2y} + 130e^{y} + 169) dy$		
	$= \frac{\pi}{3.6^2} \left[\frac{1}{2} e^{2y} + 5.2 e^{y} + 6.76 y \right] \left(\text{ or } \frac{\pi}{324} \left[\frac{25}{2} e^{2y} + 130 e^{y} + 169 y \right] \right)$	A1	1.1b
	$= \frac{\pi}{3.6^2} \left\{ \left(\frac{1}{2} e^{2h} + 5.2 e^{h} + 6.76h \right) - \left(\frac{1}{2} e^{0} + 5.2 e^{0} + 6.76(0) \right) \right\}$ or e.g. $= \frac{\pi}{324} \left\{ \left(\frac{25}{2} e^{2h} + 130 e^{h} + 169h \right) - \left(\frac{25}{2} e^{0} + 130 e^{0} + 6.76(0) \right) \right\}$	M1	2.1
	$=\frac{\pi}{3.6^2}\left(\frac{1}{2}e^{2h}+5.2e^h+6.76h-5.7\right)$	A1	1.1b
		(5)	
(d)	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\pi}{3.6^2} \left(\mathrm{e}^{2h} + 5.2\mathrm{e}^h + 6.76 \right) = \frac{\pi}{3.6^2} \left(\mathrm{e}^{0.4} + 5.2\mathrm{e}^{0.2} + 6.76 \right)$	M1	3.1a
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V}\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{3.539} \times 0.015 \times 60$	M1	1.1b
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 25.4\mathrm{cm}\mathrm{h}^{-1}$	A1	3.2a
(4)		(3)	
(d) Way 2	$y = 0.2 \Longrightarrow x = \frac{2.6 + e^{0.2}}{3.6} \Longrightarrow A = \pi \left(\frac{2.6 + e^{0.2}}{3.6}\right)^2 \left(=3.54\right)$	M1	3.1a
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{0.015 \times 60}{3.54}$	M1	1.1b
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 25.4\mathrm{cm}\mathrm{h}^{-1}$	A1	3.2a
(11 marks)			
Notes			
 (a) B1: Uses the model to obtain a correct value for <i>k</i>. Must be 2.6 not -2.6 (b) 			

M1: Substitutes their value of k and x = 1.18 into the given model to find a value for y A1: Infers that the depth of the pool could be awrt 0.5 m (c)

B1ft: Uses the model to obtain x correctly in terms of y (follow through their k)

M1: Uses the model to obtain an expression for the volume of the pool using

 $\pi \int (their f(y))^2 dy$ – must expand in order to reach an integrable form (allow poor squaring e.g.

 $(a + b)^2 = a^2 + b^2$. Note that the π may be recovered later.

A1: Correct integration

M1: Selects limits appropriate to the model (h and 0) substitutes and clearly shows the use of both limits (i.e. including zero)

A1: Correct expression (allow unsimplified and isw if necessary) (d)

Way 1

M1: Recognises that $\frac{dV}{dh}$ is required and attempts to find $\frac{dV}{dh}$ or $\frac{dh}{dV}$ from their integration or using the configuration result (before integrating). Must clearly be identified as $\frac{dV}{dV}$ or $\frac{dh}{dW}$ unless this

using the earlier result (before integrating). Must clearly be identified as $\frac{dV}{dh}$ or $\frac{dh}{dV}$ unless this

implied by subsequent work.

M1: Evidence of the correct use of the chain rule (ignore any confusion with units). Look for an attempt to divide 15 or their converted 15 by their $\frac{dV}{dh}$ or to multiply 15 or their converted 15 by

 $\frac{\mathrm{d}h}{\mathrm{d}V}$ but must reach a value for $\frac{\mathrm{d}h}{\mathrm{d}t}$ but you do not need to check their value.

A1: Interprets their solution correctly to obtain the correct answer (awrt 25.4) with the correct units

Way 2

M1: Uses y = 0.2 to find x and the surface area of the water at that instant

M1: Attempts to divide the rate by their area (ignore any confusion with units)

A1: Interprets their solution correctly to obtain the correct answer (awrt 25.4) with the correct units