Question	Scheme	Marks	AOs
8(a)	$k=2.6$	B1	3.4
		(1)	
(b)	$x=1.18 \Rightarrow \ln (3.6 \times 1.18-22.6$ " $)=\ldots$	M1	1.1b
	$h=0.4995 \ldots \mathrm{~m}$	A1	2.2b
		(2)	
(c)	$y=\ln (3.6 x-2.6) \Rightarrow x=\frac{\mathrm{e}^{y}+2.6}{3.6}$ or $\frac{5 \mathrm{e}^{y}+13}{18}$	B1ft	1.1a
	$\begin{gathered} V=\pi \int\left(\frac{\mathrm{e}^{y}+2.6}{3.6}\right)^{2} \mathrm{~d} y=\frac{\pi}{3.6^{2}} \int\left(\mathrm{e}^{2 y}+5.2 \mathrm{e}^{y}+6.76\right) \mathrm{d} y \\ \text { or } \frac{\pi}{324} \int\left(25 \mathrm{e}^{2 y}+130 \mathrm{e}^{y}+169\right) \mathrm{d} y \end{gathered}$	M1	3.3
	$=\frac{\pi}{3.6^{2}}\left[\frac{1}{2} \mathrm{e}^{2 y}+5.2 \mathrm{e}^{y}+6.76 y\right]\left(\right.$ or $\left.\frac{\pi}{324}\left[\frac{25}{2} \mathrm{e}^{2 y}+130 \mathrm{e}^{y}+169 y\right]\right)$	A1	1.1b
	$\begin{aligned} & =\frac{\pi}{3.6^{2}}\left\{\left(\frac{1}{2} \mathrm{e}^{2 h}+5.2 \mathrm{e}^{h}+6.76 h\right)-\left(\frac{1}{2} \mathrm{e}^{0}+5.2 \mathrm{e}^{0}+6.76(0)\right)\right\} \\ & =\frac{\pi}{324}\left\{\left(\frac{25}{2} \mathrm{e}^{2 h}+130 \mathrm{e}^{h}+169 h\right)-\left(\frac{25}{2} \mathrm{e}^{0}+130 \mathrm{e}^{0}+6.76(0)\right)\right\} \end{aligned}$	M1	2.1
	$=\frac{\pi}{3.6^{2}}\left(\frac{1}{2} \mathrm{e}^{2 h}+5.2 \mathrm{e}^{h}+6.76 h-5.7\right)$	A1	1.1b
		(5)	
(d)	$\frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{\pi}{3.6^{2}}\left(\mathrm{e}^{2 h}+5.2 \mathrm{e}^{h}+6.76\right)=\frac{\pi}{3.6^{2}}\left(\mathrm{e}^{04}+5.2 \mathrm{e}^{02}+6.76\right)$	M1	3.1a
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \frac{\mathrm{~d} V}{\mathrm{~d} t}=\frac{1}{3.539 \ldots} \times 0.015 \times 60$	M1	1.1b
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=25.4 \mathrm{~cm} \mathrm{~h}^{-1}$	A1	3.2a
		(3)	
(d) Way 2	$y=0.2 \Rightarrow x=\frac{2.6+\mathrm{e}^{02}}{3.6} \Rightarrow A=\pi\left(\frac{2.6+\mathrm{e}^{02}}{3.6}\right)^{2}(=3.54)$	M1	3.1a
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{0.015 \times 60}{3.54}$	M1	1.1b
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=25.4 \mathrm{~cm} \mathrm{~h}^{-1}$	A1	3.2a

(11 marks)

Notes

(a)

B1: Uses the model to obtain a correct value for k. Must be 2.6 not -2.6
(b)

M1: Substitutes their value of k and $x=1.18$ into the given model to find a value for y
A1: Infers that the depth of the pool could be awrt 0.5 m
(c)

B1 ft: Uses the model to obtain x correctly in terms of y (follow through their k)
M1: Uses the model to obtain an expression for the volume of the pool using
$\pi \int(\text { their } f(y))^{2} \mathrm{~d} y$ - must expand in order to reach an integrable form (allow poor squaring e.g. $(a+b)^{2}=a^{2}+b^{2}$. Note that the $\boldsymbol{\pi}$ may be recovered later.
A1: Correct integration
M1: Selects limits appropriate to the model (h and 0) substitutes and clearly shows the use of both limits (i.e. including zero)
A1: Correct expression (allow unsimplified and isw if necessary)
(d)

Way 1
M1: Recognises that $\frac{\mathrm{d} V}{\mathrm{~d} h}$ is required and attempts to find $\frac{\mathrm{d} V}{\mathrm{~d} h}$ or $\frac{\mathrm{d} h}{\mathrm{~d} V}$ from their integration or using the earlier result (before integrating). Must clearly be identified as $\frac{\mathrm{d} V}{\mathrm{~d} h}$ or $\frac{\mathrm{d} h}{\mathrm{~d} V}$ unless this implied by subsequent work.
M1: Evidence of the correct use of the chain rule (ignore any confusion with units). Look for an attempt to divide 15 or their converted 15 by their $\frac{\mathrm{d} V}{\mathrm{~d} h}$ or to multiply 15 or their converted 15 by $\frac{\mathrm{d} h}{\mathrm{~d} V}$ but must reach a value for $\frac{\mathrm{d} h}{\mathrm{~d} t}$ but you do not need to check their value.
A1: Interprets their solution correctly to obtain the correct answer (awrt 25.4) with the correct units
Way 2
M1: Uses $y=0.2$ to find x and the surface area of the water at that instant
M1: Attempts to divide the rate by their area (ignore any confusion with units)
A1: Interprets their solution correctly to obtain the correct answer (awrt 25.4) with the correct units

