5. An engineer is investigating the motion of a sprung diving board at a swimming pool.

Let E be the position of the end of the diving board when it is at rest in its equilibrium position and when there is no diver standing on the diving board.
A diver jumps from the diving board.
The vertical displacement, $h \mathrm{~cm}$, of the end of the diving board above E is modelled by the differential equation

$$
4 \frac{\mathrm{~d}^{2} h}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} h}{\mathrm{~d} t}+37 h=0
$$

where t seconds is the time after the diver jumps.
(a) Find a general solution of the differential equation.

When $t=0$, the end of the diving board is 20 cm below E and is moving upwards with a speed of $55 \mathrm{~cm} \mathrm{~s}^{-1}$.
(b) Find, according to the model, the maximum vertical displacement of the end of the diving board above E.
(c) Comment on the suitability of the model for large values of t.

