$$
\mathbf{M}=\left(\begin{array}{rrr}
2 & -1 & 1 \\
3 & k & 4 \\
3 & 2 & -1
\end{array}\right) \quad \text { where } k \text { is a constant }
$$

(a) Find the values of k for which the matrix \mathbf{M} has an inverse.
(b) Find, in terms of p, the coordinates of the point where the following planes intersect

$$
\begin{align*}
& 2 x-y+z=p \\
& 3 x-6 y+4 z=1 \\
& 3 x+2 y-z=0 \tag{5}
\end{align*}
$$

(c) (i) Find the value of q for which the set of simultaneous equations

$$
\begin{aligned}
& 2 x-y+z=1 \\
& 3 x-5 y+4 z=q \\
& 3 x+2 y-z=0
\end{aligned}
$$

can be solved.
(ii) For this value of q, interpret the solution of the set of simultaneous equations geometrically.

