Question	Scheme	Marks	AOs
3(a) (i)	z-2i =2	B1	1.1b
(ii)	$\arg(z+2)=\frac{\pi}{4}$	B1	1.1b
		(2)	
(b)	${z \in \mathbb{C}: z - 2i = 2} \cap {z \in \mathbb{C}: \arg(z + 2) = \frac{\pi}{4}}$	B1ft	2.5
		(1)	
(c)	Solves $x^2 + (y-2)^2 = 4$ and $y = x + 2$ to reach $x =$ or $y =$ Alternatively uses Pythagoras to find the length of triangle $\sqrt{2}$ and uses to reach $x =$ or $y =$	M1	3.1a
	Finds a complete coordinate or complex number	dM1	1.1b
	$z = \sqrt{2} + (2 + \sqrt{2})i$ and $z = -\sqrt{2} + (2 - \sqrt{2})i$	A1	1.1b
		(3)	
(6 marks)			
Notes:			
(a) (i) B1: Correct circle locus seen (a) (ii) B1: Correct half-line locus seen			
(b) B1ft: Follow through their equations with set notation			
(c) M1: Identifies a suitable strategy for finding an x or y coordinate of a point of intersection. An attempt at solving $x^2 + (y \pm 2)^2 = 4$ or 2 and $y = \pm x \pm 2$ or uses Pythagoras to find the length of triangle $\sqrt{2}$ and uses to reach $x = \dots$ or $y = \dots$			
dM1: Finds a complete coordinate, by substitution into $y = \pm x \pm 2$ or if uses $x^2 + (y \pm 2)^2 = 4$ must reject the incorrect coordinate. A1: Correct complex numbers.			