Question	Scheme	Marks	AOs
6(a)	$\binom{2}{3} \cdot \binom{8}{12} = 16 + 36 - 60$	M1	1.1b
	$\cos\theta = \frac{-8}{\sqrt{2^2 + 3^2 + (-4)^2}\sqrt{8^2 + 12^2 + 15^2}}$	M1	3.1b
	Acute angle between the sides of the tent is 86°	A1	3.2a
		(3)	
(b)	2(6) + 3(7) - 4(8) = 1 and $8(6) + 12(7) + 15(8) = 252$	M1	3.4
	Point <i>P</i> lies on both planes therefore lies on the straight line	A1	2.4
		(2)	
(c)	Attempts the scalar product between the direction of the rope and the normal to side <i>ABCD</i> of the tent and uses trigonometry to find an angle	M1	3.1b
	$\left(\begin{pmatrix} 6\\7\\8 \end{pmatrix} - \begin{pmatrix} -4\\-3\\0 \end{pmatrix} \right) \cdot \begin{pmatrix} 2\\3\\-4 \end{pmatrix} = 18 \text{ or } \left(\begin{pmatrix} -4\\-3\\0 \end{pmatrix} - \begin{pmatrix} 6\\7\\8 \end{pmatrix} \right) \cdot \begin{pmatrix} 2\\3\\-4 \end{pmatrix} = -18$	M1 A1	1.1b 1.1b
	$\cos \alpha = \frac{18}{\sqrt{2^2 + 3^2 + (-4)^2}\sqrt{10^2 + 10^2 + 8^2}}$ $\therefore \ \theta = 90 - \arccos\left(\frac{18}{\sqrt{29}\sqrt{264}}\right) \text{ or } \theta = \arcsin\left(\frac{18}{\sqrt{29}\sqrt{264}}\right)$	M1	1.1b
	Acute angle between tent side and rope is 12	A1	3.2a
		(5)	
	(10 marks		

Notes:

(a)

M1: Calculates the scalar product between the two normal vectors

M1: Applies the scalar product formula between the two normal vectors to find a value for $\cos \theta$ A1: Identifies the correct angle by linking the angle between the normals and the angle between the planes.

(b)

M1: Substitutes point P into each equation of the plane and shows that that each plane is satisfied A1: Comments that therefore point P lies on the straight line.

(c)

M1: Realises the scalar product between the line and the normal to the plane is needed and uses trigonometry to find an angle

M1: Calculates the scalar product between $\pm \left(\begin{pmatrix} 6 \\ 7 \\ -3 \end{pmatrix} - \begin{pmatrix} -4 \\ -3 \\ -3 \end{pmatrix} \right)$ and $\pm \begin{pmatrix} 2 \\ 3 \\ -3 \end{pmatrix}$

$$\mathbf{A1:} \begin{pmatrix} 10\\10\\8 \end{pmatrix} \cdot \begin{pmatrix} 2\\3\\-4 \end{pmatrix} = 18 \text{ or } \begin{pmatrix} 10\\10\\8 \end{pmatrix} \cdot \begin{pmatrix} -2\\-3\\4 \end{pmatrix} = -18 \text{ or } \begin{pmatrix} -10\\-10\\-8 \end{pmatrix} \cdot \begin{pmatrix} -2\\-3\\4 \end{pmatrix} = 18 \text{ or } \begin{pmatrix} -10\\-10\\-8 \end{pmatrix} \cdot \begin{pmatrix} 2\\3\\-4 \end{pmatrix} = -18$$

M1: A fully complete and correct method for obtaining the acute angle		
A1: Awrt 12° . Do not isw. Withhold this mark if extra answers are given.		