6(a)	$\left(\begin{array}{r}2 \\ 3 \\ -4\end{array}\right) \cdot\left(\begin{array}{c}8 \\ 12 \\ 15\end{array}\right)=16+36-60$	M1	1.1b
	$\cos \theta=\frac{-8}{\sqrt{2^{2}+3^{2}+(-4)^{2}} \sqrt{8^{2}+12^{2}+15^{2}}}$	M1	3.1b
	Acute angle between the sides of the tent is 86°	A1	3.2a
		(3)	
(b)	$2(6)+3(7)-4(8)=1$ and $8(6)+12(7)+15(8)=252$	M1	3.4
	Point P lies on both planes therefore lies on the straight line	A1	2.4
		(2)	
(c)	Attempts the scalar product between the direction of the rope and the normal to side $A B C D$ of the tent and uses trigonometry to find an angle	M1	3.1b
	$\left(\left(\begin{array}{l}6 \\ 7 \\ 8\end{array}\right)-\left(\begin{array}{r}-4 \\ -3 \\ 0\end{array}\right)\right) \cdot\left(\begin{array}{r}2 \\ 3 \\ 4\end{array}\right)=18$ or $\left(\left(\begin{array}{r}-4 \\ -3 \\ 0\end{array}\right)-\left(\begin{array}{l}6 \\ 7 \\ 8\end{array}\right)\right) \cdot\left(\begin{array}{r}2 \\ 3 \\ -4\end{array}\right)=-18$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { 1.1b } \\ & \text { 1.1b } \end{aligned}$
	$\begin{aligned} & \cos \alpha=\frac{18}{\sqrt{2^{2}+3^{2}+(-4)^{2}} \sqrt{10^{2}+10^{2}+8^{2}}} \\ & \therefore \theta=90-\arccos \left(\frac{18}{\sqrt{29} \sqrt{264}}\right) \text { or } \theta=\arcsin \left(\frac{18}{\sqrt{29} \sqrt{264}}\right) \end{aligned}$	M1	1.1b
	Acute angle between tent side and rope is 12	A1	3.2a
		(5)	

(10 marks)

Notes:

(a)

M1: Calculates the scalar product between the two normal vectors
M1: Applies the scalar product formula between the two normal vectors to find a value for $\cos \theta$
A1: Identifies the correct angle by linking the angle between the normals and the angle between the planes.
(b)

M1: Substitutes point P into each equation of the plane and shows that that each plane is satisfied
A1: Comments that therefore point P lies on the straight line.
(c)

M1: Realises the scalar product between the line and the normal to the plane is needed and uses trigonometry to find an angle
M1: Calculates the scalar product between $\pm\left(\left(\begin{array}{l}6 \\ 7 \\ 8\end{array}\right)-\left(\begin{array}{r}-4 \\ -3 \\ 0\end{array}\right)\right)$ and $\pm\left(\begin{array}{r}2 \\ 3 \\ -4\end{array}\right)$
A1: $\left(\begin{array}{c}10 \\ 10 \\ 8\end{array}\right) \cdot\left(\begin{array}{r}2 \\ 3 \\ -4\end{array}\right)=18$ or $\left(\begin{array}{c}10 \\ 10 \\ 8\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ -3 \\ 4\end{array}\right)=-18$ or $\left(\begin{array}{c}-10 \\ -10 \\ -8\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ -3 \\ 4\end{array}\right)=18$ or $\left(\begin{array}{c}-10 \\ -10 \\ -8\end{array}\right) \cdot\left(\begin{array}{r}2 \\ 3 \\ -4\end{array}\right)=-18$

M1: A fully complete and correct method for obtaining the acute angle
A1: Awrt 12°. Do not isw. Withhold this mark if extra answers are given.

