Question	Scheme	Marks	AOs
7 (a)	$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	B1	1.2
	$\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = y \implies e^{x} - e^{-x} = y(e^{x} + e^{-x}) = ye^{x} + ye^{-x}$		
	$\Rightarrow e^{x}(1-y) = e^{-x}(1+y) \Rightarrow e^{2x} = \frac{1+y}{1-y}$		
	$e^{y} - e^{-y}$	M1	2.1
	$\frac{e^{y} - e^{-y}}{e^{y} + e^{-y}} = x \Longrightarrow e^{y} - e^{-y} = x(e^{y} + e^{-y}) = xe^{y} + xe^{-y}$ 1 + x		
	$\Rightarrow e^{y}(1-x) = e^{-y}(1+x) \implies e^{2y} = \frac{1+x}{1-x}$		
	$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) *$	A1*	1.1b
		(3)	
(b)	$x = \frac{1}{2} \ln \left(\frac{1 + 0.8}{1 - 0.8} \right) = \frac{1}{2} \ln(9) = \ln 3$	B1	3.1a
	$V = \pi \int_0^{\ln 3} \tanh^2 x \mathrm{d}x$	B1	1.1b
	$= \{\pi\} \int_0^{\ln 3} (1 - \operatorname{sech}^2 x) \mathrm{d}x = [x - \tanh x]_0^{\ln 3} = [\ln 3 - 0.8] - [0]$	M1	3.1a
	$=\pi[\ln 3-0.8]$	A1	1.1b
	Volume cylinder = $\pi \times 0.8^2 \times' \ln 3'$ or = $\pi \int_0^{\ln 3} 0.8^2 dx$	M1	1.1b
	Volume = cylinder – solid of revolution	M1	3.1a
	$Volume = \pi \left[\frac{4}{5} - \frac{9}{25} \ln 3 \right]$	A1	1.1b
		(7)	
		(10 n	narks)
Notes:			
 (a) B1: Correct expression for tanh x M1: Sets equal to y and rearranges to get e^{2x} = f(y). Alternatively switches x and y and rearranges to get e^{2y} = f(x). A1*: Achieves the printed answer with no errors seen 			
 (b) B1: x = ln 3 B1: Correct expression for the volume of the curve including π, dx can be implied later work and follow through upper limit M1: Uses the identity tanh²x = 1 - sech²x to complete the integration and correct use of limits A1: Correct volume of the curve M1: A correct method to find the volume of the required cylinder 			
M1: A correct method to find the required volume.A1: Correct volume in the required form			