8(a)	$\mathbf{M} \mathbf{M}^{\mathrm{T}}=\left(\begin{array}{rrr}1 & 4 & -1 \\ 3 & 0 & p \\ q & r & s\end{array}\right)\left(\begin{array}{rrr}1 & 3 & q \\ 4 & 0 & r \\ -1 & p & s\end{array}\right)=\left(\begin{array}{lll}k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k\end{array}\right) \Rightarrow 3-p=0$	M1	2.1
	$p=3$ *	A1*	1.1b
		(2)	
(b)	$k=18$	B1	2.2a
		(1)	
(c)	$\mathbf{M}^{-1}=\frac{1}{18}\left(\begin{array}{rrr}1 & 3 & q \\ 4 & 0 & r \\ -1 & 3 & s\end{array}\right)$	B1ft	2.2a
		(1)	
(d)	Finds any two equations involving q, r and s from $q+4 r-s=0,3 q+3 s=0, q^{2}+r^{2}+s^{2}=18$	M1	3.1a
	All three correct equations $q+4 r-s=0,3 q+3 s=0, q^{2}+r^{2}+s^{2}=18$	A1	1.1b
	$s=-q, r=-\frac{1}{2} q \Rightarrow q^{2}+\left(-\frac{1}{2} q\right)^{2}+(-q)^{2}=18 \Rightarrow q=2 \sqrt{2}$ or $q=-2 r, s=2 r \Rightarrow(-2 r)^{2}+r^{2}+(2 r)^{2}=18 \Rightarrow r=-\sqrt{2}$ or $q=-s, r=\frac{1}{2} s \Rightarrow(-s)^{2}+\left(\frac{1}{2} s\right)^{2}+s^{2}=18 \Rightarrow s=-2 \sqrt{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { 3.1a } \\ & \text { 1.1b } \end{aligned}$
	$q=2 \sqrt{2}, r=-\sqrt{2}$ and $s=-2 \sqrt{2}$ only	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 2.2 \mathrm{a} \end{aligned}$
		(6)	

(10 marks)

Notes:

(a)
$\mathbf{M 1}$: Sets $\mathbf{M M}^{\mathbf{T}}=k \mathbf{I}$ and finds a value for p
A1*: Correct value for p
(b)

B1: Correct value for k
(c)

B1ft: Deduces \mathbf{M}^{-1}, follow through on their value of k
(d)

M1: Uses $\mathbf{M M}^{\mathrm{T}}=k \mathbf{I}$ with $p=3$ and their value of k to find at least two equations involving at least two of the constants q, r and s
A1: All three correct equations
M1: A complete method to solve the equations to find a value for either q, r or s
A1: A correct constant

M1: Finds the other two constants
A1: Deduces all three correct constants
Alternative method using $\left(\begin{array}{rrr}1 & 3 & q \\ 4 & 0 & r \\ -1 & 3 & s\end{array}\right)\left(\begin{array}{ccc}1 & 4 & -1 \\ 3 & 0 & 3 \\ q & r & s\end{array}\right)=\left(\begin{array}{ccc}18 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 18\end{array}\right)$

M1: First row times first column $1+9+q^{2}=18 \Rightarrow q=\ldots$
A1: Correct value for $q, q=2 \sqrt{2} \quad(q>0)$
M1: First row time second column $4+q r=0 \Rightarrow r=\ldots$
A1: Correct value for $r, r=-\frac{4}{2 \sqrt{2}}=-\sqrt{2}$
M1: First row time third column $-1+9+q s=0 \Rightarrow s=\ldots$
A1: Deduces the correct value for $s, s=-\frac{8}{2 \sqrt{2}}=-2 \sqrt{2}$

