| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 3(a) | $100 m^{2}+60 m+13=0 \Rightarrow m=-0.3 \pm 0.2 \mathrm{i}$ | M1 | 1.1b |
|  | $x=\mathrm{e}^{-03 t}(A \cos 0.2 t+B \sin 0.2 t)$ | A1 | 1.1b |
|  | PI: $x=2$ | B1 | 1.1b |
|  | $x=\mathrm{e}^{-03 t}(A \cos 0.2 t+B \sin 0.2 t)+2$ | A1ft | 2.2a |
|  |  | (4) |  |
| (b) | $t=0, x=0 \Rightarrow A=-2$ | M1 | 3.4 |
|  | $\begin{gathered} \frac{\mathrm{d} x}{\mathrm{~d} t}=-0.3 \mathrm{e}^{-0.3 t}(-2 \cos 0.2 t+B \sin 0.2 t)+\mathrm{e}^{-0.3 t}(0.4 \sin 0.2 t+0.2 B \cos 0.2 t) \\ t=0, \frac{\mathrm{~d} x}{\mathrm{~d} t}=10 \Rightarrow B=\ldots(\mathrm{NB} B=47) \end{gathered}$ | M1 | 3.4 |
|  | $x=\mathrm{e}^{-03 t}(47 \sin 0.2 t-2 \cos 0.2 t)+2$ | A1 | 1.1b |
|  | $\begin{gathered} -0.3 \mathrm{e}^{-03 t}(47 \sin 0.2 t-2 \cos 0.2 t)+\mathrm{e}^{-03 t}(9.4 \cos 0.2 t+0.4 \sin 0.2 t)=0 \\ \Rightarrow t=\ldots \\ \quad \text { or } \\ x=\sqrt{2213} \mathrm{e}^{-03 t} \sin (0.2 t-0.0425)+2 \\ \text { P } \frac{\mathrm{d} x}{\mathrm{~d} t}=-0.3 \sqrt{2213} \mathrm{e}^{-03 t} \sin (0.2 t-0.0425) \\ +0.2 \sqrt{2213} \mathrm{e}^{-03 t} \cos (0.2 t-0.0425) \\ \mathrm{P} t=\ldots \end{gathered}$ | M1 | 3.1b |
|  | $\begin{gathered} \tan 0.2 t=\frac{100}{137} \Rightarrow 0.2 t=0.630 \ldots \\ \text { or } \\ \tan (0.2 t-0.0425)=\frac{2}{3} \mathrm{p} \quad 0.2 t=0.630 \end{gathered}$ | M1 | 2.1 |
|  | $t=3.15 \ldots$ weeks | A1 | 1.1b |
|  |  | M1 | 3.4 |
|  | $=\operatorname{awrt} 12.1\{\mu \mathrm{~g} / \mathrm{ml}\}$ | A1 | 3.2a |
|  |  | (8) |  |
| (c) | $t=10 \Rightarrow x=\mathrm{e}^{-3}(47 \sin (2)-2 \cos (2))+2=4.16 \ldots$ | M1 | 3.4 |
|  | The model suggests that it would be safe to give the second dose | A1ft | 2.2a |
|  |  | (2) |  |

(14 marks)

## Notes

(a)

M1: Uses the model to form and solve the auxiliary equation
A1: Correct CF, does not need $x=$
B1: Correct PI
A1ft: Deduces the correct GS (follow through their CF +PI ). Must have $x=\mathrm{f}(t)$ and PI not 0
(b)

M1: Uses the model and the initial conditions to establish the value of " $A$ "
M1: Differentiates their model using the product rule and uses the initial conditions to establish the value of " $B$ ". Must be using $x=0$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=10$
A1: Correct particular solution. This can be implied by the correct constants found following a correct answer to part (a).

M1: Uses their solution to the model with a correct strategy to obtain the required value of $t$ e.g. differentiates, sets equal to zero and solves for $t$
M1: Uses a correct trigonometric approach that leads to a value for $t$
A1: Correct value for $t$
M1: Uses the model and their value for $t$ to find the maximum concentration.
A1: Correct value
(c)

M1: Uses the model to find the concentration when $t=10$
A1ft: Makes a suitable comment that is consistent with their calculated value
Special case: If the candidate's maximum value is less than 5 then
M1: never reaches 5 as maximum is.... or max is less than 5
A1: yes, it is safe

