Question	Scheme	Marks	AOs
3 (a)	$100m^2 + 60m + 13 = 0 \Longrightarrow m = -0.3 \pm 0.2i$	M1	1.1b
	$x = e^{-0.3t} \left(A \cos 0.2t + B \sin 0.2t \right)$	A1	1.1b
	PI: $x = 2$	B1	1.1b
	$x = e^{-0.3t} \left(A \cos 0.2t + B \sin 0.2t \right) + 2$	A1ft	2.2a
		(4)	
(b)	$t = 0, \ x = 0 \Longrightarrow A = -2$	M1	3.4
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -0.3\mathrm{e}^{-0.3t} \left(-2\cos 0.2t + B\sin 0.2t \right) + \mathrm{e}^{-0.3t} \left(0.4\sin 0.2t + 0.2B\cos 0.2t \right)$		
	$t = 0, \ \frac{\mathrm{d}x}{\mathrm{d}t} = 10 \Longrightarrow B = \dots(\mathrm{NB}\ B = 47)$	M1	3.4
	$x = e^{-0.3t} \left(47 \sin 0.2t - 2 \cos 0.2t \right) + 2$	A1	1.1b
	$-0.3e^{-0.3t} (47\sin 0.2t - 2\cos 0.2t) + e^{-0.3t} (9.4\cos 0.2t + 0.4\sin 0.2t) = 0$		
	$\Rightarrow t = \dots$		
	or		
	$x = \sqrt{2213}e^{-0.3t}\sin(0.2t - 0.0425) + 2$	M1	3.1h
	$P \frac{dx}{dt} = -0.3\sqrt{2213}e^{-0.3t}\sin(0.2t - 0.0425)$	1411	5.10
	+ $0.2\sqrt{2213}e^{-0.3t}\cos(0.2t-0.0425)$		
	$ b t = \dots $		
	$\tan 0.2t = \frac{100}{137} \Longrightarrow 0.2t = 0.630$		
	or	M1	2.1
	$\tan(0.2t - 0.0425) = \frac{2}{3} \bullet 0.2t = 0.630$		
	t = 3.15 weeks	A1	1.1b
	$x = e^{-0.3 \times "3.15} (47 \sin(0.2 \times "3.15") - 2\cos(0.2 \times "3.15")) + 2$	M1	3.4
	$= awrt \ 12.1 \ \{\mu g/ml\}$	A1	3.2a
		(8)	
(C)	$t = 10 \Rightarrow x = e^{-3} (47 \sin(2) - 2\cos(2)) + 2 = 4.16$	M1	3.4
	The model suggests that it would be safe to give the second dose	A1ft	2.2a
		$\frac{(2)}{(14)}$	marke)
(14 marks)			
11005			

(a)

M1: Uses the model to form and solve the auxiliary equation

A1: Correct CF, does not need x =

B1: Correct PI

A1ft: Deduces the correct GS (follow through their CF + PI). Must have x = f(t) and PI not 0 (b)

M1: Uses the model and the initial conditions to establish the value of "A"

M1: Differentiates their model using the product rule and uses the initial conditions to establish

the value of "B". Must be using x = 0 and $\frac{dx}{dt} = 10$

A1: Correct particular solution. This can be implied by the correct constants found following a correct answer to part (a).

- M1: Uses their solution to the model with a correct strategy to obtain the required value of t e.g. differentiates, sets equal to zero and solves for t
- M1: Uses a correct trigonometric approach that leads to a value for t
- A1: Correct value for *t*
- M1: Uses the model and their value for *t* to find the maximum concentration. A1: Correct value
- (c)

M1: Uses the model to find the concentration when t = 10A1ft: Makes a suitable comment that is consistent with their calculated value **Special case:** If the candidate's maximum value is less than 5 then M1: never reaches 5 as maximum is.... or max is less than 5 A1: yes, it is safe