Question	Scheme	Marks	AOs
6(a)	$\begin{aligned} \|\mathbf{M}\| & =k(-1-1)-5(-1-2)+7(1-2) \\ \{ & =8-2 k\} \end{aligned}$	M1	1.1b
	Minors: $\left(\begin{array}{ccc}-2 & -3 & -1 \\ -12 & -k-14 & k-10 \\ -2 & k-7 & k-5\end{array}\right)$ Cofactors: $\left(\begin{array}{ccc}-2 & 3 & -1 \\ 12 & -k-14 & 10-k \\ -2 & 7-k & k-5\end{array}\right)$	M1	1.1b
	$\mathbf{M}^{-1}=\frac{1}{8-2 k}\left(\begin{array}{rcc}-2 & 12 & -2 \\ 3 & -k-14 & 7-k \\ -1 & 10-k & k-5\end{array}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
		(4)	
(b)	$\mathbf{M}^{-1}=\frac{1}{4}\left(\begin{array}{rrr} -2 & 12 & -2 \\ 3 & -16 & 5 \\ -1 & 8 & -3 \end{array}\right) \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\mathbf{M}^{-1}\left(\begin{array}{l} 1 \\ p \\ 2 \end{array}\right)$ Solve the equations simultaneously to achieve values for x, y and z $y+3 z=2 p-2 \text { and } 4 y+8 z=-1 \mathrm{P} \quad x=\ldots, y=\ldots, z=\ldots$	M1	3.1a
	$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}-\frac{1}{2}+3 p-1 \\ \frac{3}{4}-4 p+\frac{5}{2} \\ -\frac{1}{4}+2 p-\frac{3}{2}\end{array}\right)$	A1ft	1.1b
	$\begin{aligned} & \left(\frac{12 p-6}{4}, \frac{13-16 p}{4}, \frac{8 p-7}{4}\right) \\ & \left(3 p-\frac{3}{2}, \frac{13}{4}-4 p, 2 p-\frac{7}{4}\right) \end{aligned}$	A1	2.2a
		(3)	
(c)(i)			
	For consistency: E.g. eliminates z to find two equations from For consistency: E.g. eliminates x to find two equations from For consistency: E.g. eliminates y to find two equations $3 x+2 y=q+2$ $y+3 z=1-4 q$ from $x-2 z=2-q$ $3 x+2 y=7 q-1$ $3 y+9 z=-3$ $-x+2 z=1-5 q$ $18 x+12 y=15$ $y+3 z=2 q-2$ $-6 x+12 z=-9$	M1	3.1a
		M1	1.1 b
	$q=\frac{1}{2}$	A1	1.1b

Alternative

Equating coefficients leading to two out of three equations and solves to find values for a and b

$$
4 a+b=2,5 a+b=1,7 a+b=-1
$$

$$
\{a=-1, b=6\}
$$

Forms the fourth equation involving $q a+b q=2$ and substitutes in the values of a and b to fi

$$
q=\frac{1}{2}
$$

Finds a coordinate of intersection of the planes

$$
4 x+5 y+7 z=1 \text { and } 2 x+y-z=2
$$

e.g let $z=0 \mathrm{P} \quad 4 x+5 y=1$ and $2 x+y=2 \mathrm{P} \quad y=-1, x=1.5$

Substitutes the values for x, y and z into $x+y+z=q$ to reach a value for
$q=\frac{1}{2}$

value for q	M 1	1.1 b	
	$q=\frac{1}{2}$	A 1	1.1 b

(ii)

For example:

$\begin{gathered} x=\lambda \Rightarrow 3 \lambda+2 y=\frac{5}{2}, \lambda-2 z=\frac{3}{2} \Rightarrow y=\mathrm{f}(\lambda), z=\mathrm{f}(\lambda) \\ y=\lambda \Rightarrow 3 x+2 \lambda=\frac{5}{2}, \lambda+3 z=1 \Rightarrow x=\mathrm{f}(\lambda), z=\mathrm{f}(\lambda) \\ z=\lambda \Rightarrow 3 y+9 \lambda=-3,-6 x+12 \lambda=-9 \Rightarrow x=\mathrm{f}(\lambda), y=\mathrm{f}(\lambda) \end{gathered}$	M1	3.1a
Let $x=\lambda, \lambda=\frac{y-\frac{5}{4}}{-\frac{3}{2}}=\frac{z+\frac{3}{4}}{\frac{1}{2}}$ or $y=\frac{5}{4}-\frac{3}{2} \lambda, z=-\frac{3}{4}+\frac{1}{2} \lambda$ Let $y=\lambda, \lambda=\frac{x-\frac{5}{6}}{-\frac{2}{3}}=\frac{z+\frac{1}{3}}{-\frac{1}{3}}$ or $x=\frac{5}{5}-\frac{2}{3} \lambda, z=-\frac{1}{3}-\frac{1}{3} \lambda$ Let $z=\lambda, \lambda=\frac{x-\frac{3}{2}}{2}=\frac{y+1}{-3}$ or $x=\frac{3}{2}+2 \lambda, y=-1-3 \lambda$	A1	1.1b
$\begin{aligned} & \mathbf{r}=\frac{5}{4} \mathbf{j}-\frac{3}{4} \mathbf{k}+t(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}) \text { о.e. } \\ & \mathbf{r}=\frac{5}{6} \mathbf{i}-\frac{1}{3} \mathbf{k}+t(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}) \text { о.е. } \\ & \mathbf{r}=\frac{3}{2} \mathbf{i}-\mathbf{j}+t(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}) \text { о.e. } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1.1 \mathrm{~b} \\ 2.5 \end{gathered}$
Alternative (ii) Finds two different coordinates that lie on the line of intersection 	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
Finds the vector equation of the line passing through their two points	M1	1.1b
$\mathbf{r}=\frac{5}{4} \mathbf{j}-\frac{3}{4} \mathbf{k}+t(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k})$ o.e	A1	2.5

| $\mathbf{r}=\frac{5}{6} \mathbf{i}-\frac{1}{3} \mathbf{k}+t(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k})$ o.e. |
| :---: | :---: | :---: | :---: |
| $\mathbf{r}=\frac{3}{2} \mathbf{i}-\mathbf{j}+t(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k})$ o.e. |\quad.

(14 marks)

Notes

(a)

M1: Correct method to find the determinant. Condone one sign slip
M1: A correct first step in obtaining the inverse. Could be the matrix of minors or cofactors. Condone sign slips as long as the intention is clear.
M1: Fully correct method to obtain the inverse. Attempts matrix of minors, cofactors, transposes and $1 /$ determinant
A1: Correct matrix
(b)

M1: A complete strategy for solving the given equations e.g. multiplies the given coordinates by their inverse or solves simultaneously to achieve values for x, y and z
A1ft: Correct calculation on their inverse matrix (unsimplified) or at least on correct value if solving simultaneously
A1: Correct coordinates
(c)(i)

M1: Uses a correct strategy that will lead to establishing a value for q. E.g. eliminating one of x, y or z
M1: Solves a suitable equation to obtain a value for q
A1: Correct value
(c)(i) Alternative 1

M1: Equating coefficients leading to two out of three equations and solves to find values for a and b
M1: Solves a suitable equation to obtain a value for q using their values for a and b
(c)(i) Alternative 2

M1: Finds a coordinate of intersection of the planes $4 x+5 y+7 z=1$ and $2 x+y-z=2$
M1: Substitutes the values for x, y and z into $x+y+z=q$ to reach a value for q
A1: Correct value
(ii)

M1: Uses a correct strategy to obtain the Cartesian equation of the line or the general coordinates A1: Correct Cartesian equation or coordinates in terms of a parameter.

M1: Uses their Cartesian equation to correctly extract the position and direction to form a vector equation for the required line
A1: Correct equation (o.e.) look out for multiples of the direction vector
Alternative (ii)
M1: Finds two different coordinates that lie on the line of intersection
A1: Correct coordinates
M1: Uses their coordinates to find the vector equation of the line that passes through them.
A1: Correct equation (o.e.), look out for multiples of the direction vector. Must have $\mathbf{r}=\ldots$
Alternative (ii) outside spec
M1: Finds the cross product between the normal vectors of two of the planes and a coordinate that lies on all three planes. If a coordinate is found in (i) it must be used in this part to award this mark.
A1: Correct cross product
M1: Uses the coordinate and the cross product to find the equation of the line
A1: Correct equation (o.e.), look out for multiples of the direction vector. Must have $\mathbf{r}=\ldots$

