Question	Scheme	Marks	AOs
7(a)	$1 = \frac{a}{0.5+b}, \ 0.5 = \frac{a}{2.5+b} \Rightarrow a =, b =$	M1	3.3
	a = 2, b = 1.5	A1	1.1b
		(2)	
(b)	$V_1 = \pi \int x^2 dy = \pi \int \left(\frac{"2"}{y + "1.5"}\right)^2 dy$	B1ft	3.4
	$\pi \int_{0.5}^{2.5} \left(\frac{"2"}{y + "1.5"}\right)^2 dy$	M1	1.1a
	$= \{4\pi\} \left[-(y+1.5)^{-1} \right]_{0.5}^{2.5} (=\pi)$	M1	1.1b
	$x^2 + (y - 3)^2 = 0.5$	B1	2.2a
	$V_2 = \pi \int x^2 dy = \pi \int (0.5 - (y-3)^2) dy \text{ or}$ $\pi \int (-y^2 + 6y - 8.5) dy$	M1	1.1b
	$= \pi \int_{2.5}^{3+\frac{1}{\sqrt{2}}} \left(0.5 - \left(y - 3\right)^2\right) dy \text{ or } = \pi \int_{2.5}^{3+\frac{1}{\sqrt{2}}} \left(-y^2 + 6y - 8.5\right) dy$	M1	3.3
	$= \left\{\pi\right\} \left[0.5y - \frac{1}{3}(y-3)^3\right]_{25}^{3+\frac{1}{\sqrt{2}}} \text{ or } = \left\{\pi\right\} \left[-\frac{1}{3}y^3 + 3y^2 - 8.5y\right]_{25}^{3+\frac{1}{\sqrt{2}}}$	A1	1.1b
	$V_1 + V_2 + \text{cylinder} = \pi + \pi \left(\frac{5}{24} + \frac{\sqrt{2}}{6}\right) + \frac{1}{2}\pi$	dM1	3.4
	$=\pi\left(\frac{41}{24}+\frac{\sqrt{2}}{6}\right)\approx 6.11\mathrm{cm}^3$	A1	2.2b
		(9)	
(1			marks)
Notes			
(a) M1: Uses the given coordinates correctly in the equation modelling the curve to obtain at least one correct equation and attempts to find the values of <i>a</i> and <i>b</i> A1: Correct values			

(b)

B1ft: Uses the model to obtain $\pi \int \left(\frac{\text{their }a}{y + \text{their }b}\right)^2 dy$. Note the *P* can be recovered if appears

later.

M1: Chooses limits appropriate to the model i.e. 0.5 and 2.5

M1: Integrates to obtain an expression of the form $k(y + "1.5")^{-1}$

B1: Deduces the correct equation for the circle

M1: Uses their circle equation and $\pi \int x^2 dy$ to attempt the top volume. Note the *P* can be recovered if appears later.

- M1: Identifies limits appropriate to the model i.e. 2.5 and 3 + their radius A1: Correct integration
- dM1: Uses the model to find the volume of the chess piece including the cylindrical base (dependent on all previous method marks)
- A1: Correct volume