Question	Scheme	Marks	AOs
1(a) (i) (ii)	$z_{1} z_{2} \mid=3 \sqrt{2}$	B1	1.1b
	$\arg \left(z_{1} z_{2}\right)=\frac{\pi}{3}+\left(-\frac{\pi}{12}\right)=\frac{\pi}{4}$ o.e.	B1	1.1 b
		(2)	
(b) (i) (ii)	$n=8$	B1ft	2.2a
	$\left\|w^{n}\right\|=\left(\text { 'their }\left\|z_{1} z_{2}\right\|^{\prime}\right)^{\text {their } n}$	M1	1.1 b
	$\left\|w^{n}\right\|=104976$	A1	1.1 b
		(3)	

(5 marks)

Notes:

(a)
(i)

B1: Deduces $\left|z_{1} z_{2}\right|=3 \sqrt{2}$
(ii)

B1: Deduces $\arg \left(z_{1} z_{2}\right)=\frac{\pi}{4}$ o.e
These marks may be awarded for $z_{1} z_{2}=3 \sqrt{2}\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right)$
(b)
(i)

B1ft: 2π divided by their $\arg \left(z_{1} z_{2}\right)$ found in part (a) (ii) to give an integer
Alternatively smallest positive integer multiple required to make their argument a multiple of 2π
(ii)

M1: Their answer to (a) (i) to the power of their n.
A1: 104976

