Question	Scheme		Marks	AOs
2	$\begin{pmatrix} 4 & -2 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ mx+c \end{pmatrix} = \begin{pmatrix} X \\ mX+c \end{pmatrix}$ leading to an equation in x, m, c and X 4x - 2(mx+c) = X and 5x + 3(mx+c) = mX + c		M1	3.1a
			A1	1.1b
	5x+3(mx+c) = m(4x-2(mx+c))+c leading to $5+3m = 4m-2m^{2} \qquad (3c = -2mc+c)$		M1	2.1
	$2m^{2} - m + 5 = 0 \Longrightarrow b^{2} - 4ac =$ $(-1)^{2} - 4(2)(5) = \dots$	Solves $3c = -2mc + c \Longrightarrow m =$	dM1	1.1b
	Correct expression for the discriminant = $\{-39\} < 0$ therefore there are no invariant lines.	m = -1 and shows a contradiction in $5 + 3m = 4m - 2m^2$ therefore there are no invariant lines.	A1	2.4
	$\frac{\text{Alternative}}{\begin{pmatrix} 4 & -2 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ mx \end{pmatrix}} = \begin{pmatrix} X \\ mX \end{pmatrix} \text{ leading to an equation in } x, m \text{ and } X$ $4x - 2(mx) = X \text{ and } 5x + 3(mx) = mX$		M1	3.1a
			A1	1.1b
	5x+3(mx) = m(4x-2(mx)) leading to $5+3m = 4m-2m^2$		M1	2.1
	$2m^{2} - m + 5 = 0 \Longrightarrow b^{2} - 4ac = (-1)^{2} - 4(2)(5) = \dots$		dM1	1.1b
	Correct expression for the discriminant = $\{-39\}$ < 0 therefore there are no invariant lines that pass through the origin no invariant lines.		A1	2.4
			(5)	
			(5 marks)	

Notes:

M1: Sets up a matrix equation in an attempt to find a fixed line and extract at least one equation. A1: Correct equations.

M1: Eliminates X from the simultaneous equations and equates the coefficients of x leading to a quadratic equation in terms of m.

dM1: Dependent on the previous method, finds the value of the discriminant, this can be seen in an attempt to solve the quadratic using the formula.

Alternatively solves 3c = -2mc + c and finds a value for m

Note: If the quadratic equation in *m* is solved on a calculator and complex roots given this is M0 as they are not showing why there are no real roots.

A1: Correct expression for the discriminant, states < 0 and draws the required conclusion. Alternatively, correct value for *m*, shows a contradiction in $5+3m = 4m - 2m^2$ and draws the required conclusion.

Alternative

M1: Sets up a matrix equation in an attempt to find a fixed line and extract at least one equation. A1: Correct equations.

