Question	Scheme		Marks	AOs
2	$\left(\begin{array}{cc}4 & -2 \\ 5 & 3\end{array}\right)\binom{x}{m x+c}=\binom{X}{m X+c}$ leading to an equation in x, m, c and X		M1	3.1a
	$4 x-2(m x+c)=X$ and $5 x+3(m x+c)=m X+c$		A1	1.1b
	$5 x+3(m x+c)=m(4 x-2(m x+c))+c$ leading to $5+3 m=4 m-2 m^{2} \quad(3 c=-2 m c+c)$		M1	2.1
	$\begin{array}{r} 2 m^{2}-m+5=0 \Rightarrow b^{2}-4 a c= \\ (-1)^{2}-4(2)(5)=\ldots \end{array}$	Solves $3 c=-2 m c+c \Rightarrow m=\ldots$	dM1	1.1b
	Correct expression for the discriminant $=\{-39\}<0$ therefore there are no invariant lines.	$m=-1$ and shows a contradiction in $5+3 m=4 m-2 m^{2}$ therefore there are no invariant lines.	A1	2.4
	Alternative $\left(\begin{array}{cc}4 & -2 \\ 5 & 3\end{array}\right)\binom{x}{m x}=\binom{X}{m X}$ leading to an equation in x, m and X		M1	3.1a
	$4 x-2(m x)=X$ and $5 x+3(m x)=m X$		A1	1.1b
	$\begin{aligned} & 5 x+3(m x)=m(4 x-2(m x)) \\ & \text { leading to } 5+3 m=4 m-2 m^{2} \end{aligned}$		M1	2.1
	$2 m^{2}-m+5=0 \Rightarrow b^{2}-4 a c=(-1)^{2}-4(2)(5)=\ldots$		dM1	1.1b
	Correct expression for the discriminant $=\{-39\}<0$ therefore there are no invariant lines that pass through the origin no invariant lines.		A1	2.4
			(5)	

Notes:

M1: Sets up a matrix equation in an attempt to find a fixed line and extract at least one equation.
A1: Correct equations.
M1: Eliminates X from the simultaneous equations and equates the coefficients of x leading to a quadratic equation in terms of m.
dM1: Dependent on the previous method, finds the value of the discriminant, this can be seen in an attempt to solve the quadratic using the formula.
Alternatively solves $3 c=-2 m c+c$ and finds a value for m
Note: If the quadratic equation in m is solved on a calculator and complex roots given this is M0 as they are not showing why there are no real roots.
A1: Correct expression for the discriminant, states < 0 and draws the required conclusion.
Alternatively, correct value for m, shows a contradiction in $5+3 m=4 m-2 m^{2}$ and draws the required conclusion.

Alternative

M1: Sets up a matrix equation in an attempt to find a fixed line and extract at least one equation.
A1: Correct equations.

M1: Eliminates X from the simultaneous equations and equates the coefficients of x leading to a quadratic equation in terms of m.
dM1: Dependent on the previous method, finds the value of the discriminant.
A1: Correct expression for the discriminant, states <0 and draws the required conclusion.

