Question	Scheme	Marks	AOs
3 (a)	$f'(x) = A(1-x^2)^{-\frac{1}{2}}$ $f''(x) = Bx(1-x^2)^{-\frac{3}{2}}$ and		
	$f'''(x) = C(1-x^2)^{-\frac{3}{2}} + Dx^2(1-x^2)^{-\frac{5}{2}} \text{ or } \frac{C(1-x^2)^{\frac{3}{2}} + Dx^2(1-x^2)^{\frac{1}{2}}}{(1-x^2)^3}$	M1	2.1
	$f'(x) = (1-x^2)^{-\frac{1}{2}}$ or $\frac{1}{\sqrt{1-x^2}}$ $f''(x) = x(1-x^2)^{-\frac{3}{2}}$ or $\frac{x}{(1-x^2)^{\frac{3}{2}}}$ and		
	$f'''(x) = (1 - x^2)^{-\frac{3}{2}} + 3x^2 (1 - x^2)^{-\frac{5}{2}} \text{ or } \frac{1}{(1 - x^2)^{\frac{3}{2}}} + \frac{3x^2}{(1 - x^2)^{\frac{5}{2}}}$	A1	1.1b
	from quotient rule $\frac{\left(1-x^2\right)^{\frac{3}{2}}+3x^2\left(1-x^2\right)^{\frac{1}{2}}}{\left(1-x^2\right)^3}$		
	Finds $f(0)$, $f'(0)$, $f''(0)$ and $f'''(0)$ and applies the formula		
	$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2} + f'''(0)\frac{x^3}{6}$	M1	1.1b
	$\{f(0) = 0, f'(0) = 1, f''(0) = 0, f'''(0) = 1\}$		
	$f(x) = x + \frac{x^3}{6} \cos \theta$	A1	1.1b
		(4)	
(b)	$\operatorname{arcsin}\left(\frac{1}{2}\right) = \frac{1}{2} + \frac{\left(\frac{1}{2}\right)^3}{6} = \frac{\pi}{6} \Longrightarrow \pi = \dots$	M1	1.1b
	$\pi = \frac{25}{8} \text{ o.e.}$	A1ft	2.2b
		(2)	
(6 marks)			

Notes:

(a)

M1: Finds the correct form of the first three derivatives, may be unsimplified – the third may come later.

A1: Correct first three derivatives, may be unsimplified – the third may come later.

M1: Finds f(0), f'(0), f''(0) and f'''(0) and applies to the correct formula, needs to go up to x^3 .

A1:
$$x + \frac{x^3}{6}$$
 cso ignore any higher terms whether correct or not

Special case: If they think that their $f''(0) \neq 0$ then maximum score M1 A0 M1 A0

M1 for correct form of the first two derivatives

M1 Correctly uses their f(0), f'(0), f''(0) and applies to the correct formula

Note: If candidates do not find the first three derivatives but use f(0) = 0, f'(0) = 1, f''(0) = 0, f'''(0) = 1 and use these correctly in the formula this can score M0 A0 M1 A0 **(b)** M1: Substitutes $x = \frac{1}{2}$ into both sides and rearranges to find $\pi = \dots$ A1ft: Infers that $\pi = \frac{25}{8}$ o.e. Follow through their $6f\left(\frac{1}{2}\right)$