Question	Scheme	Marks	AOs
4(a)	A complete attempt to find the sum of the cubes of the first n odd numbers using three of the standard summation formulae. Attempts to find $\sum (2r+1)^3$ or $\sum (2r-1)^3$ by expanding and using summation formulae	M1	3.1a
	$\sum_{r=1}^{n} (2r-1)^{3} = \sum_{r=1}^{n} (8r^{3}-12r^{2}+6r-1) = 8\sum_{r=1}^{n} r^{3}-12\sum_{r=1}^{n} r^{2}+6\sum_{r=1}^{n} r - \sum_{r=1}^{n} 1$ or $\sum_{r=0}^{n-1} (2r+1)^{3} = \sum_{r=0}^{n-1} (8r^{3}+12r^{2}+6r+1) = 8\sum_{r=0}^{n-1} r^{3}+12\sum_{r=0}^{n-1} r^{2}+6\sum_{r=0}^{n-1} r + \sum_{r=0}^{n-1} 1$	M1	1.1b
	$= 8\frac{n^2}{4}(n+1)^2 - 12\frac{n}{6}(n+1)(2n+1) + 6\frac{n}{2}(n+1) - n$ or $= 8\frac{(n-1)^2}{4}(n)^2 + 12\frac{(n-1)}{6}(n)(2n-1) + 6\frac{(n-1)}{2}(n) + n$	M1 A1	1.1b 1.1b
	Multiplies out to achieve a correct intermediate line for example $n + 1 + 2n^2 - 2n + 1 - n = 2n^4 - 2n^3 + n^2 + 2n^3 - 2n^2 + n - n$ $2n^4 + 4n^3 + 2n^2 - 4n^3 - 6n^2 - 2n + 3n^2 + 3n - n$ leading to $= n^2 (2n^2 - 1) \cos^*$	A1 *	2.1
		(5)	
(b)	$\sum_{r=n}^{n+9} (2r-1)^3 = \sum_{r=1}^{n+9} (2r-1)^3 - \sum_{r=1}^{n-1} (2r-1)^3$ $= (n+9)^2 \left(2(n+9)^2 - 1\right) - (n-1)^2 \left(2(n-1)^2 - 1\right) = 99800$ or $\sum_{r=n+1}^{n+10} (2r-1)^3 = \sum_{r=1}^{n+10} (2r-1)^3 - \sum_{r=1}^{n} (2r-1)^3$ $= (n+10)^2 \left(2(n+10)^2 - 1\right) - (n)^2 \left(2n^2 - 1\right) = 99800$ or $\sum_{r=n-9}^{n} (2r-1)^3 = \sum_{r=1}^{n} (2r-1)^3 - \sum_{r=1}^{n-10} (2r-1)^3$ $= (n)^2 \left(2(n)^2 - 1\right) - (n-10)^2 \left(2(n-10)^2 - 1\right) = 99800$	M1	3.1a
	$80n^{3} + 960n^{2} + 5820n - 86760 = 0$ or $80n^{3} + 1200n^{2} + 7980n - 79900 = 0$ or $80n^{3} - 1200n^{2} + 7980n - 119700 = 0$ Solves cubic equation	A1	1.1b

	Achieves $n = 5$ and the smallest number as 11	Al	2.3
	or		
	Achieves $n = 15$ and the smallest number as 11		
		(4)	
		(9 1	marks)
Notes:			
(a)			
M1: A comple summation for	te attempt to find the sum of the cubes of n odd numbers using three mulae.	of the stan	dard
M1: Expands	$\sum_{r=1}^{n} (2r-1)^{3} \text{ or } \sum_{r=0}^{n-1} (2r+1)^{3} \text{ and splits into fours appropriate sums.}$		
M1: Applies th	ne result for at least three summations $\sum_{r=0}^{n-1} r^3$, $\sum_{r=0}^{n-1} r^2$, $\sum_{r=0}^{n-1} r$ and $\sum_{r=0}^{n-1} 1$ or		
$\sum_{r=1}^{n} r^{3}, \sum_{r=1}^{n} r^{2}, \sum_{r=1}^{n}$	$\sum_{r=1}^{n} 1$ as appropriate to their expansion provided that there is an	ı attempt at	
cubing some v	alues.		
A1: Correct ur	simplified expression.		
A1 *: Multipli expression. csc	es out to achieve a correct intermediate expression which clearly lead	ds to the co	rrect
Special case: I	f uses $\sum_{r=1}^{n} (2r+1)^3$ leading to $= 8\frac{n^2}{4}(n+1)^2 + 12\frac{n}{6}(n+1)(2n+1) + 6\frac{n}{2}$	$\frac{l}{2}(n+1)+n$	max
score is M1 M	0 M1 A1 A0		
(b)			
M1: Uses the	enswer to part (a) to find the sum of the cubes of the first $N + 10$ odd	numbers n	ninus

Achieves n = 6 and the smallest number as 11 or Δ chieves n=5 and the smallest number as 11

M1: Uses the answer to part (a) to find the sum of the cubes of the first N + 10 odd numbers minus the sum of the first N odd numbers and sets equal to 99800 or equivalent.

dM1: Uses their calculator to solve their cubic equation, dependent on previous method mark.

A1: Correct simplified cubic equation.

A1: cao