Question	Scheme	Marks	AOs
5(a)	$\frac{dy}{dx} = \frac{-\lambda}{\sqrt{1 - \beta x^2}} \text{ where } \lambda > 0 \text{ and } \beta > 0 \text{ and } \beta \neq 1$ Alternatively $2\cos y = x \Rightarrow \frac{dx}{dy} = \alpha \sin y \Rightarrow \frac{dy}{dx} = \frac{1}{\alpha \sin y}$	M1	1.1b
	$\frac{dy}{dx} = \frac{-\frac{1}{2}}{\sqrt{1 - \frac{1}{4}x^2}} \text{ or } \frac{dy}{dx} = \frac{-1}{2\sqrt{1 - \frac{1}{4}x^2}} \text{ o.e.}$ $\text{or } \frac{dy}{dx} = -\frac{1}{2\sin y} \text{ or}$	A1	1.1b
	States that $\frac{dy}{dx} \neq 0$ therefore <i>C</i> has no stationary points. Tries to solve $\frac{dy}{dx} = 0$ and ends up with a contradiction e.g1 = 0 therefore <i>C</i> has no stationary points. As cosec $y > 1$ therefore <i>C</i> has no stationary points.	A1	2.4
		(3)	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{2\sqrt{1 - \frac{1}{4} \times 1^2}} = \left\{ -\frac{1}{\sqrt{3}} \right\}$	M1	1.1b
	Normal gradient $= -\frac{1}{m}$ and $y - \frac{\pi}{3} = m_n(x-1)$ Alternatively $\frac{\pi}{3} = m_n(1) + c \Rightarrow c = \left\{ \frac{\pi}{3} - \sqrt{3} \right\}$ and then $y = m_n x + c$	M1	1.1b
	$y = 0 \Rightarrow 0 - \frac{\pi}{3} = \sqrt{3} \left(x_A - 1 \right) \Rightarrow x_A = \dots \left\{ 1 - \frac{\pi}{3\sqrt{3}} \text{ or } 1 - \frac{\pi\sqrt{3}}{9} \right\}$ and $x = 0 \Rightarrow y_B - \frac{\pi}{3} = \sqrt{3} \left(0 - 1 \right) \Rightarrow y_B = \dots \left\{ \frac{\pi}{3} - \sqrt{3} \right\}$	M1	3.1a
	Area = $\frac{1}{2} \times x_A \times -y_B = \frac{1}{2} \left(1 - \frac{\pi}{3\sqrt{3}} \right) \left(\sqrt{3} - \frac{\pi}{3} \right)$	M1	1.1b
	Area $\frac{1}{54} \left(27\sqrt{3} - 18\pi + \sqrt{3}\pi^2 \right) \left(p = 27, q = -18, r = 1 \right)$	A1	2.1
		(5)	
	(8 marks)		
Notes:			
(a) M1: Finds the correct form for $\frac{dy}{dx}$			

A1: States or shows that
$$\frac{dy}{dx} \neq 0$$
 and draws the required conclusion. This mark can be scored as long as the M mark has been awarded.

(b)

M1: Substitutes x = 1 into their $\frac{dy}{dx}$

A1: Correct dy

(b)

M1: Finds the normal gradient and finds the equation of the normal using $y - \frac{\pi}{2} = m_n(x-1)$ **M1:** Finds where their normal cuts the x-axis and the y-axis.

W1: Finds where their normal cuts the x-axis and the y-axis.

W1: Finds the area of the triangle
$$OAB = \frac{1}{2} \times x_A \times -y_B$$
.

M1: Finds the area of the triangle $OAB = \frac{1}{2} \times x_A \times -y_B$.

Special case: If finds the tangent to the curve, the x and y intercepts and the area of the triangle max score M1 M0 M1 M0 A0

A1: Correct area

Note common error
$$\frac{dy}{dx} = \frac{-1}{\sqrt{1 - \frac{1}{4}x^2}}$$
 In part (b) this leads to $\frac{dy}{dx} = \frac{-2}{\sqrt{3}}$ leading to normal gradient $\frac{\sqrt{3}}{2}$ and

 $y = \frac{\sqrt{3}}{2}x - \frac{\sqrt{3}}{2} + \frac{\pi}{3}$ and $\left[0, \frac{\pi}{3} - \frac{\sqrt{3}}{2}\right]$ and $\left[1 - \frac{2\pi}{3\sqrt{3}}, 0\right]$ therefore area $= \frac{1}{2} \left[\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right] \left(\frac{2\pi}{3\sqrt{3}} - 1\right]$ This can score M1 M1 M1 M1 A0