Question	Scheme	Mark s	AOs
6(a)	$x = r\cos\theta = a(p + 2\cos\theta)\cos\theta$ Leading to $\frac{dx}{d\theta} = \alpha\sin\theta\cos\theta + \beta\sin\theta(p + 2\cos\theta)$ or $\frac{dx}{d\theta} = \alpha\sin\theta\cos\theta + \beta\sin\theta$ or $x = a(p\cos\theta + 2\cos^2\theta) = a(\cos2\theta + p\cos\theta + 1)$ leading to $\frac{dx}{d\theta} = \alpha\sin2\theta + \beta\sin\theta$	M1	3.1a
	$\frac{dx}{d\theta} = a \left[-2\sin\theta\cos\theta - \sin\theta \left(p + 2\cos\theta \right) \right]$ or $\frac{dx}{d\theta} = -4a\sin\theta\cos\theta - ap\sin\theta \text{ or } \frac{dx}{d\theta} = -2a\sin\theta-ap\sin\theta$	A1	1.1b
	$a \left[-2\sin\theta\cos\theta - \sin\theta \left(p + 2\cos\theta \right) \right] = 0$ $\pm a \left(4\sin\theta\cos\theta + p\sin\theta \right) = 0$ $a\sin\theta \left(4\cos\theta + p \right) = 0$ Either $\sin\theta = 0$ or $\cos\theta = -\frac{p}{4}$	M1	3.1a
	$\sin \theta = 0$ implies 2 solutions (tangents which are perpendicular to the initial line) e.g. $\theta = 0, \pi$	B1	2.2a
	Therefore two solutions to $\cos \theta = -\frac{p}{4}$ are required $-\frac{p}{4} > -1 \Rightarrow p < 4 \text{ as } p \text{ is a positive constant } 2 < p < 4*$	A1*	2.4
		(5)	
(b)	Correct shape and position. Condone cusp	В1	2.2a
		(1)	
(c)	Area = $2 \times \frac{1}{2} \int_{0}^{\pi} \left[20(3 + 2\cos\theta) \right]^{2} d\theta = 400 \int_{0}^{\pi} (9 + 12\cos\theta + 4\cos^{2}\theta) d\theta$ or = $\int_{0}^{\pi} (3600 + 4800\cos\theta + 1600\cos^{2}\theta) d\theta$	M1	3.4

B1 : Deduces that as $\sin \theta = 0$ this provides two tangents. This can be implied by 2 values for θ				
M1 : Sets $\frac{dx}{d\theta} = 0$ and factorises to find values for either $\sin \theta$ or $\cos \theta$.				
A1: Corre	$\operatorname{ct} \frac{\mathrm{d}x}{\mathrm{d}\theta}$			
M1: Comp	plete method to find the correct form for $\frac{dx}{d\theta}$			
(a)	_			
Notes:				
		(14 marks)		
		(1)		
	The pond may leak/ ground may absorb some water			
	Some comment that the sides will not be smooth and draws an appropriate conclusion. The hole may not be uniform depth	B1	3.5b	
(d)	Polar equation is not likely to be accurate.			
/ 1 \	For example	(7)		
	25 (minutes)	A1	3.2a	
	or volume = 1244 litres therefore time = $\frac{1244}{50}$ =			
	30000	M1	2.2b	
	time = $\frac{1244070.691}{50000}$ =			
	Volume = area $\times 90 = 396\ 000\pi = 1\ 244\ 070.691\ (cm^3)$	M1	3.4	
	or = $200 \lceil 11(2\pi) - 0 \rceil = 4400\pi = 13823.0 \text{ (cm}^2\text{)}$			
	$= 400[11\pi - 0] = 4400\pi = 13823.0 \text{ (cm}^2\text{)}$	M1	1.1b	
	Using limits $\theta = 0$ and $\theta = \pi$ or $\theta = 0$ and $\theta = 2\pi$ as appropriate and subtracts the correct way round provided there is an attempt at integration			
	$= 400[11\theta + 12\sin\theta + \sin 2\theta] \text{ or } = 200[11\theta + 12\sin\theta + \sin 2\theta]$	A1	1.1b	
	$\cos^{2}\theta = \frac{1}{2} + \frac{1}{2}\cos 2\theta \Rightarrow$ $A = \int (9 + 12\cos\theta + 2 + 2\cos 2\theta) d\theta = \alpha\theta \pm \beta\sin\theta \pm \lambda\sin 2\theta$	M1	3.1a	
	0			
	or = $\int_{0}^{2\pi} (1800 + 2400\cos\theta + 800\cos^{2}\theta) d\theta$			
	or $ \frac{1}{2} \int_{0}^{2\pi} \left[20(3 + 2\cos\theta) \right]^{2} d\theta = 200 \int_{0}^{2\pi} \left(9 + 12\cos\theta + 4\cos^{2}\theta \right) d\theta $			

A1*: Concludes that as $\cos \theta = -\frac{p}{4} > -1 \Rightarrow p < 4$ and p is a positive constant $\therefore 0$

```
(c)
M1: Uses the model to find the area of the cross section 2 \times \frac{1}{2} \int_{0}^{\pi} \left[ 20(3 + 2\cos\theta) \right]^{2} d\theta or
\frac{1}{2} \int_{0}^{2\pi} \left[ 20(3 + 2\cos\theta) \right]^{2} d\theta
M1: Uses the identity \cos 2\theta = 2\cos^2 \theta - 1 to integrate to the required form.
A1: Correct integration.
M1: Uses limits \theta = 0 and \theta = \pi or \theta = 0 and \theta = 2\pi as appropriate and subtracts the correct way
around provided there is an attempt at integration.
Note if first M1 is not awarded for incorrect limits then award this mark for their limits used.
M1: Multiplies their area by 90 (cm).
```

B1: See scheme for examples. Any reference to the flow of water is B0

(b)

B1: Correct shape and position.

M1: Divides their volume by 50000

A1: 25 (minutes)

(d)