Question	Scheme	Marks	AOs
9(a)	$\frac{1}{1-z}$	B1	2.2a
		(1)	
(b)(i)	$1+z+z^{2}+z^{3}+$ =1+ $\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)$ + $\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)^{2}$ + $\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)^{3}$ + =1+ $\frac{1}{2}(\cos\theta+i\sin\theta)$ + $\frac{1}{4}(\cos 2\theta+i\sin 2\theta)$ + $\frac{1}{8}(\cos 3\theta+i\sin 3\theta)$ +	M1	3.1a
	$\frac{1}{1-z} = \frac{1}{1-\frac{1}{2}(\cos\theta + i\sin\theta)} \times \frac{1-\frac{1}{2}\cos\theta + \frac{1}{2}i\sin\theta}{1-\frac{1}{2}\cos\theta + \frac{1}{2}i\sin\theta}$ or $\frac{1}{1-z} = \frac{2}{2-(\cos\theta + i\sin\theta)} \times \frac{2-(\cos\theta - i\sin\theta)}{2-(\cos\theta - i\sin\theta)}$	M1	3.1a
	$\left\{\frac{1}{2}(\sin\theta) + \frac{1}{4}(\sin 2\theta) + \frac{1}{8}(\sin 3\theta) + \ldots\right\} = \frac{\frac{1}{2}\sin\theta}{\left(1 - \frac{1}{2}\cos\theta\right)^2 + \left(\frac{1}{2}\sin\theta\right)^2}$ or $\left\{\frac{1}{2}(\sin\theta) + \frac{1}{4}(\sin 2\theta) + \frac{1}{8}(\sin 3\theta) + \ldots\right\} = \frac{2\sin\theta}{\left(2 - \cos\theta\right)^2 + \left(\sin\theta\right)^2}$	M1	2.1
	$\overline{\left(1-\frac{1}{2}\cos\theta\right)^2+\left(\frac{1}{2}\sin\theta\right)^2=1-\cos\theta+\frac{1}{4}\cos^2\theta+\frac{1}{4}\sin^2\theta}$ $=\frac{5}{4}-\cos\theta$ or $(2-\cos\theta)^2+(\sin\theta)^2=4-4\cos\theta+\cos^2\theta+\sin^2\theta$ $=5-4\cos\theta$	M1	1.1b
	$\frac{1}{2}\sin\theta + \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta + \dots = \frac{\frac{1}{2}\sin\theta}{\frac{5}{4} - \cos\theta} = \frac{2\sin\theta}{5 - 4\cos\theta} *$	A1*	1.1b
	Alternative $1+z+z^{2}+z^{3}+$ $=1+\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)+\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)^{2}+\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)^{3}+$ $=1+\frac{1}{2}(\cos\theta+i\sin\theta)+\frac{1}{4}(\cos2\theta+i\sin2\theta)+\frac{1}{8}(\cos3\theta+i\sin3\theta)+$	M1	3.1a

(a) B1: See sc (b)(i) M1: Subst theorem.	heme itutes $z = \frac{1}{2}(\cos\theta + i\sin\theta)$ into at least 3 terms of the series and applies d itutes $z = \frac{1}{2}(\cos\theta + i\sin\theta)$ into their answer to part (a) and rationalises the		
Notes:		(8)	marks)
		(2)	
	mod $z > 1$ contradiction hence cannot be purely imaginary	Al	2.4
	Alternative 2 $\frac{1}{1-z} = ki \Rightarrow z = 1 + \frac{i}{k}$	M1	3.1a
L	$-1 \le \cos \theta \le 1$ therefore $\frac{1}{6} < \frac{3}{2(5-4\cos \theta)} < \frac{3}{2}$ so sum must contain real part	A1	2.4
	Alternative 1 Imaginary part is $\frac{4-2\cos\theta}{5-4\cos\theta} = \frac{1}{2} + \frac{3}{2(5-4\cos\theta)}$	M1	3.1a
	As $(-1 \le) \cos \theta \le 1$ therefore there is no solution to $\cos \theta = 2$ so there will also be a real part, hence the sum cannot be purely imaginary.	A1	2.4
(b)(ii)	$\frac{1 - \frac{1}{2}\cos\theta}{\frac{5}{4} - \cos\theta} = 0 \Longrightarrow \cos\theta = 2$	M1	3.1a
		(5)	
	$\frac{1}{2}\sin\theta + \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta + \dots = \frac{2\sin\theta}{5 - 4\cos\theta} *$	Al*	1.1b
	Select the imaginary part $\frac{2\sin\theta}{5-4\cos\theta}$	M1	1.1b
	$\frac{1 - \frac{1}{2}e^{-i\theta}}{1 - \frac{1}{4}e^{i\theta} - \frac{1}{4}e^{-i\theta} + \frac{1}{4}} = \frac{4 - 2e^{-i\theta}}{5 - 2(e^{i\theta} + e^{-i\theta})} = \frac{4 - 2(\cos\theta - i\sin\theta)}{5 - 2(2\cos\theta)}$	M1	2.1
	$\frac{1}{1-z} = \frac{1}{1-\frac{1}{2}e^{i\theta}} \times \frac{1-\frac{1}{2}e^{-i\theta}}{1-\frac{1}{2}e^{-i\theta}}$	Ml	3.1a

A1*: cso. Achieves the printed answer having substituted $z = \frac{1}{2} (\cos \theta + i \sin \theta)$ into 4 terms of the series. Alternative M1: Substitutes $z = \frac{1}{2} (\cos \theta + i \sin \theta)$ into at least 3 terms of the series and applies de Moivre's theorem. M1: Substitutes $z = \frac{1}{2} e^{i\theta}$ into their answer to part (a) and rationalises the denominator. **M1:** Uses $e^{-i\theta} = \cos\theta - i\sin\theta$ and $e^{i\theta} + e^{-i\theta} = 2\cos\theta$ to express in terms of $\sin\theta$ and $\cos\theta$ M1: Select the imaginary terms. A1*: cso Achieves the printed answer having substituted $z = \frac{1}{2} (\cos \theta + i \sin \theta)$ into 4 terms of the series. (b)(ii) M1: Setting the real part of the series = 0 and rearranges to find $\cos \theta = \dots$ A1: See scheme Alternative 1 M1: Rearranges imaginary part so that $\cos\theta$ only appears once A1: Uses $-1 \le \cos \theta \le 1$ to show that the sum must always be positive so must contain a real part Alternative 2

M1: Sets sum as purely imaginary and rearranges to make z the subject

A1: Shows a contradiction and draws an appropriate conclusion