| 9(a) | $\frac{1}{1-z}$ | B 1 | 2.2 a |
| :--- | :--- | :---: | :---: |
|  |  | (1) |  |
| (b)(i) | $1+z+z^{2}+z^{3}+\ldots$ <br> $=1+\left(\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)\right)+\left(\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)\right)^{2}+\left(\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)\right)^{3}+\ldots$ | M1 | 3.1a |

$=1+\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)+\frac{1}{4}(\cos 2 \theta+\mathrm{i} \sin 2 \theta)+\frac{1}{8}(\cos 3 \theta+\mathrm{i} \sin 3 \theta)+\ldots$
$\frac{1}{1-z}=\frac{1}{1-\frac{1}{2}(\cos \theta+i \sin \theta)} \times \frac{1-\frac{1}{2} \cos \theta+\frac{1}{2} i \sin \theta}{1-\frac{1}{2} \cos \theta+\frac{1}{2} i \sin \theta}$
or
$\frac{1}{1-z}=\frac{2}{2-(\cos \theta+\mathrm{i} \sin \theta)} \times \frac{2-(\cos \theta-\mathrm{i} \sin \theta)}{2-(\cos \theta-\mathrm{i} \sin \theta)}$
$\left\{\frac{1}{2}(\sin \theta)+\frac{1}{4}(\sin 2 \theta)+\frac{1}{8}(\sin 3 \theta)+\ldots\right\}=\frac{\frac{1}{2} \sin \theta}{\left(1-\frac{1}{2} \cos \theta\right)^{2}+\left(\frac{1}{2} \sin \theta\right)^{2}}$
or
$\left\{\frac{1}{2}(\sin \theta)+\frac{1}{4}(\sin 2 \theta)+\frac{1}{8}(\sin 3 \theta)+\ldots\right\}=\frac{2 \sin \theta}{(2-\cos \theta)^{2}+(\sin \theta)^{2}}$
$\left(1-\frac{1}{2} \cos \theta\right)^{2}+\left(\frac{1}{2} \sin \theta\right)^{2}=1-\cos \theta+\frac{1}{4} \cos ^{2} \theta+\frac{1}{4} \sin ^{2} \theta$
$=\frac{5}{4}-\cos \theta$
or
$(2-\cos \theta)^{2}+(\sin \theta)^{2}=4-4 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta$
$=5-4 \cos \theta$
$\frac{1}{2} \sin \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{8} \sin 3 \theta+\ldots=\frac{\frac{1}{2} \sin \theta}{\frac{5}{4}-\cos \theta}=\frac{2 \sin \theta}{5-4 \cos \theta}$ *
A1*
1.1b

## Alternative

$$
\begin{aligned}
& 1+z+z^{2}+z^{3}+\ldots \\
& =1+\left(\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)\right)+\left(\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)\right)^{2}+\left(\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)\right)^{3}+\ldots \\
& =1+\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)+\frac{1}{4}(\cos 2 \theta+\mathrm{i} \sin 2 \theta)+\frac{1}{8}(\cos 3 \theta+\mathrm{i} \sin 3 \theta)+\ldots
\end{aligned}
$$

M1

(8 marks)

## Notes:

(a)

B1: See scheme
(b)(i)

M1: Substitutes $z=\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)$ into at least 3 terms of the series and applies de Moivre's theorem.
M1: Substitutes $z=\frac{1}{2}(\cos \theta+i \sin \theta)$ into their answer to part (a) and rationalises the denominator.
M1: Equates the imaginary terms.
M1: Multiplies out the denominator and simplifies by using the identity $\cos ^{2} \theta+\sin ^{2} \theta=1$
$\mathbf{A 1 *}$ : cso. Achieves the printed answer having substituted $z=\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)$ into 4 terms of the series.
Alternative
M1: Substitutes $z=\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)$ into at least 3 terms of the series and applies de Moivre's theorem.
M1: Substitutes $z=\frac{1}{2} \mathrm{e}^{\mathrm{i} \theta}$ into their answer to part (a) and rationalises the denominator.
M1: Uses $\mathrm{e}^{-\mathrm{i} \theta}=\cos \theta-\mathrm{i} \sin \theta$ and $\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{\mathrm{-} \theta}=2 \cos \theta$ to express in terms of $\sin \theta$ and $\cos \theta$
M1: Select the imaginary terms.
A1*: cso Achieves the printed answer having substituted $z=\frac{1}{2}(\cos \theta+\mathrm{i} \sin \theta)$ into 4 terms of the series.
(b)(ii)

M1: Setting the real part of the series $=0$ and rearranges to find $\cos \theta=$..
A1: See scheme

## Alternative 1

M1: Rearranges imaginary part so that $\cos \theta$ only appears once
A1: Uses $-1 \leq \cos \theta \leq 1$ to show that the sum must always be positive so must contain a real part

## Alternative 2

M1: Sets sum as purely imaginary and rearranges to make $z$ the subject
A1: Shows a contradiction and draws an appropriate conclusion

