| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 5(a) | $\int \frac{1}{\sqrt{x^{2}+2 x+10}} \mathrm{~d} x=\int \frac{1}{\sqrt{(x+1)^{2}+9}} \mathrm{~d} x$ | M1 | 3.1a |
|  | $=k \sinh ^{-1}\left(\frac{x+a}{b}\right)$ | M1 | 1.1b |
|  | $=\sinh ^{-1}\left(\frac{x+1}{3}\right)(+c)$ | A1 | 1.1b |
|  |  | (3) |  |
| (b) | $\begin{gathered} \int_{2}^{20} \frac{1}{\sqrt{x^{2}+2 x+10}} \mathrm{~d} x=\sinh ^{-1}\left(\frac{20+1}{3}\right)-\sinh ^{-1}\left(\frac{2+1}{3}\right) \\ =\ln (7+\sqrt{50})-\ln (1+\sqrt{2})=\ln \frac{7+\sqrt{50}}{1+\sqrt{2}} \end{gathered}$ | M1 | 1.1b |
|  | $=\frac{1}{(20-2)} \ln \frac{7+\sqrt{50}}{1+\sqrt{2}}$ | M1 | 2.1 |
|  | $\frac{1}{18} \ln (3+2 \sqrt{2})$ or e.g. $\frac{1}{9} \ln (1+\sqrt{2})$ | A1 | 2.2a |
|  |  | (3) |  |
| (6 marks) |  |  |  |
| Notes |  |  |  |
| (a) <br> M1: Recognises the need to and attempts to complete the square <br> A1: Integrates to obtain an expression of the required form <br> A1: Correct answer with or without $+c$ <br> (b) <br> M1: Correct use of limits and combines $\ln$ terms <br> M1: Correct applies the method for the mean value for their integration <br> A1: Deduces a correct expression |  |  |  |

