Question	Scheme	Marks	AOs
6	When $n = 1$ lhs $= \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ rhs $= \begin{pmatrix} 1 & 1 & \frac{1}{2}(1^2 + 3 \times 1) \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ So the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^k = \begin{pmatrix} 1 & k & \frac{1}{2}(k^2 + 3k) \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix}$	M1	2.4
	$ \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & k & \frac{1}{2}(k^2 + 3k) \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} $	M1	1.1b
	$= \begin{pmatrix} 1 & k+1 & 2+k+\frac{1}{2}(k^{2}+3k) \\ 0 & 1 & k+1 \\ 0 & 0 & 1 \end{pmatrix}$	A1	1.1b
	$2+k+\frac{1}{2}(k^{2}+3k) = 2+\frac{5}{2}k+\frac{1}{2}k^{2}$ $=\frac{1}{2}(k^{2}+5k+4) = \frac{1}{2}((k+1)^{2}+3(k+1))$	A1	2.1
	If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers n .	A1	2.4
		(6)	morka
Notes			
B1: Shows the statement is true for $n = 1$ M1: Makes a statement that assumes the result is true for $n = k$ M1: Attempts to multiply the correct matrices A1: Correct matrix in terms of k A1: Correct matrix in terms of $k + 1$ including sufficient explanation for the element at the top right hand corner A1: Correct complete conclusion			