$$
\begin{gathered}
\text { When } n=1 \text { lhs }=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
\operatorname{rhs}=\left(\begin{array}{ccc}
1 & 1 & \frac{1}{2}\left(1^{2}+3 \times 1\right) \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

B1

So the statement is true for $n=1$

Assume true for $n=k$ so $\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)^{k}=\left(\begin{array}{ccc}1 & k & \frac{1}{2}\left(k^{2}+3 k\right) \\ 0 & 1 & k \\ 0 & 0 & 1\end{array}\right)$	M1	2.4
$\left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)^{k+1}=\left(\begin{array}{ccc}1 & k & \frac{1}{2}\left(k^{2}+3 k\right) \\ 0 & 1 & k \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$	M1	1.1 b
$=\left(\begin{array}{ccc}1 & k+1 & 2+k+\frac{1}{2}\left(k^{2}+3 k\right) \\ 0 & 1 & k+1 \\ 0 & 0 & 1\end{array}\right)$	A1	1.1 b
$2+k+\frac{1}{2}\left(k^{2}+3 k\right)=2+\frac{5}{2} k+\frac{1}{2} k^{2}$	A1	2.1
$=\frac{1}{2}\left(k^{2}+5 k+4\right)=\frac{1}{2}\left((k+1)^{2}+3(k+1)\right)$		

Notes

B1: Shows the statement is true for $n=1$
M1: Makes a statement that assumes the result is true for $n=k$
M1: Attempts to multiply the correct matrices
A1: Correct matrix in terms of k
A1: Correct matrix in terms of $k+1$ including sufficient explanation for the element at the top right hand corner
A1: Correct complete conclusion

