Question	Scheme	Marks	AOs
9(a)	$m^2 + 2m + 1 = 0 \Longrightarrow m = \dots (-1)$	M1	1.1b
	$CF: y = (At + B)e^{-t}$	M1	2.2a
	PI : Try $y = kt^2 e^{-t} + c$	B1	2.2a
	$\frac{dy}{dt} = 2kte^{-t} - kt^{2}e^{-t}, \ \frac{d^{2}y}{dt^{2}} = 2ke^{-t} - 2kte^{-t} + kt^{2}e^{-t} - 2kte^{-t}$ $2ke^{-t} - 4kte^{-t} + kt^{2}e^{-t} + 2(2kte^{-t} - kt^{2}e^{-t}) + kt^{2}e^{-t} + 1 = e^{-t} + 1 \Longrightarrow k = \dots$	M1	1.1b
	$k = \frac{1}{2} \Longrightarrow PI : y = \frac{1}{2}t^2 e^{-t} + 1$	A1	1.1b
	$y = CF + PI = (At + B)e^{-t} + \frac{1}{2}t^{2}e^{-t} + 1$	A1	1.1a
		(6)	
(b)	$t = 0, y = 1 \Longrightarrow B = 0$	M1	3.4
	$y = (At + 0.5t^{2})e^{-t} + 1 \Longrightarrow \frac{dy}{dt} = (A + t - At - 0.5t^{2})e^{-t}$ $t = 0, \ \frac{dy}{dt} = 9 \Longrightarrow A = 9$	M1	3.4
	$y = (0.5t^2 + 9t)e^{-t} + 1$	A1	1.1b
		(3)	
(c)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 0 \Longrightarrow 0.5t^2 + 8t - 9 = 0 \Longrightarrow t = \dots$	M1	3.1a
	$t > 0 \Longrightarrow t = 1.0553 \Longrightarrow y =$	M1	3.4
	y = 4.50 mg / 1	A1	1.1b
		(3)	
(d)	$t = 8 \Longrightarrow y = (0.5 \times 8^2 + 9 \times 8)e^{-8} + 1 = 1.03488$		
	• This is close to 1 so the model supports the suggestion that the concentration returns to its initial value after around 8 hours	M1 A1ft	3.4 3.2b
		(2)	
(14 marks)			
Notes			
 (a) M1: Forms and solves the auxiliary equation A1: Deduces the correct complementary function B1: Deduces the correct form of the PI given the outcome for the CF M1: Complete method to establish the value of k A1: Correct PI A1: Correct GS (b) M1: Uses the model and the initial conditions to find the value of B 			

M1: Uses the model by differentiating and using the other initial condition to find a value for A A1: Correct PS (c) M1: Solves $\frac{dy}{dt} = 0$ to find *t* when the concentration is a maximum M1: Uses their value of t and the model to find the maximum concentration A1: Correct value (d) M1: Uses their model to find the concentration when t = 8 in order to test the claim A1ft: Follow through their solution but the comment must be consistent with their values.