	Scheme		AOs
3(a)	$n = 1 \Rightarrow \mathbf{M}^{1} = \begin{pmatrix} 3^{1} & \frac{a}{2}(3^{1} - 1) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & a \\ 0 & 1 \end{pmatrix}$ {So the result is true for $n = 1$ }	B1	2.2a
	Assume true for $n = k$ Or assume \mathbf{M}^n or $\begin{pmatrix} 3 & a \\ 0 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & \frac{a}{2}(3^k - 1) \\ 0 & 1 \end{pmatrix}$	M1	2.4
	A correct method to find an expression for $n = k + 1$ $\begin{pmatrix} 3 & a \\ 0 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3^k & \frac{a}{2}(3^k - 1) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & a \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 3 & a \\ 0 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3^k & \frac{a}{2}(3^k - 1) \\ 0 & 1 \end{pmatrix}$	M1	1.1b
	$ \begin{pmatrix} 3(3^k) & a(3^k) + \frac{a}{2}(3^k - 1) \\ 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 3(3^k) & 3 \times \frac{a}{2}(3^k - 1) + a \\ 0 & 1 \end{pmatrix} $	A1	1.1b
	$ \begin{pmatrix} 3^{k+1} & \frac{a}{2} [2(3^k) + (3^k - 1)] \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3^{k+1} & \frac{a}{2} [3(3^k) - 1] \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3^{k+1} & \frac{a}{2} [3^{k+1} - 1] \\ 0 & 1 \end{pmatrix} $ $ \begin{pmatrix} 3(3^k) & 3 \times \frac{a}{2} (3^k - 1) + a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3^{k+1} & \frac{a}{2} (3(3^k - 1) + 2) \\ 0 & 1 \end{pmatrix} $ $ = \begin{pmatrix} 3^{k+1} & \frac{a}{2} (3^{k+1} - 1) \\ 0 & 1 \end{pmatrix} $	A1	2.1
	If true for $n = k$ then true for $n = k + 1$ and as it is true for $n = 1$ the statement is true for all (positive integers) n	A1	2.4
		(6)	
(b)(i)	$det(\mathbf{M}^n) = 3^n \text{ or } det(\mathbf{M}) = 3$	B1	1.1b
	Uses $5 \times det(\mathbf{M}^n) = 1215 \Rightarrow p^n = q \Rightarrow n =$ $5 \times 3^n = 1215 \Rightarrow 3^n = 243 \Rightarrow n =$	M1	3.1a
	n = 5	A1	1.1b
(ii)	$ \begin{pmatrix} 3^n & \frac{a}{2}(3^n-1) \\ 0 & 1 \\ & a = \dots \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 123 \\ -2 \end{pmatrix} \Rightarrow 2(3^n) - 2\frac{a}{2}(3^n-1) = 123 $	M1	1.1b

(11 marks)				
		(5)		
	a = 1.5	A1	1.1b	
	$\frac{\frac{1}{243} \begin{pmatrix} 1 & -\frac{1}{2} (243-1) \\ 0 & a \\ & = -2 \Rightarrow a = \dots \end{pmatrix}}{\begin{pmatrix} 123 \\ -2 \end{pmatrix}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \Rightarrow \frac{123 - 2 \cdot 2 \cdot (243-1)}{243}$			
	$= 123 \Rightarrow a = \dots$			
	$\binom{243}{0} = \frac{\overline{2}(243-1)}{1} \binom{2}{-2} = \binom{123}{-2} \Rightarrow 2(243) - 2\frac{a}{2}(243-1)$			
	$\left(a_{12}, a_{12}, a_{12}\right)$			

Notes:

(a)

B1: Shows that the result holds for n = 1. Must see substitution in the RHS minimum required is $\begin{pmatrix} 3 & \frac{a}{2}(3-1) \\ 0 & 1 \end{pmatrix}$ and reaches $\begin{pmatrix} 3 & a \\ 0 & 1 \end{pmatrix}$

M1: Assumes the result is true for some value of n = k. Assume (true for) n = k is sufficient.

Alternatively states assume \mathbf{M}^n or $\begin{pmatrix} 3 & a \\ 0 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & \frac{a}{2}(3^k - 1) \\ 0 & 1 \end{pmatrix}^k$

M1: Sets up a matrix multiplication of their assumed result multiplied by the original matrix, either way round. Allow a slip as long as the intention is clear.

A1: Achieves a correct un-simplified matrix

A1: Reaches a correct simplified matrix with **no errors, the correct un-simplified matrix seen previously and at least one intermediate line which must be correct.**

A1: Correct conclusion. This mark is dependent on all previous marks except B mark but n = 1 must have been attempted. It is gained by conveying the ideas of **all four bold** points either at the end of their solution or as a narrative in their solution. Condone $n \in \mathbb{Z}$

(b)(i)

B1: States correct determinant. This can be implied by a correct equation

M1: Correct method to find a value of *n* using $5 \times \text{'their } det(\mathbf{M}^n) = 1215$ which involves solving an index equation of the form $p^n = q$ where n > 1

A1: *n* = 5

(ii)

M1: Sets up an equation by multiplying the matrix \mathbf{M}^n by $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$ setting equal to $\begin{pmatrix} 123 \\ -2 \end{pmatrix}$ and reaches a value for *a*. You may just see $2(3^n) - 2\frac{a}{2}(3^n - 1) = 123 \Rightarrow a = ...$

Follow through on their value for *n*.

A1: *a* = 1.5