$$
n=1 \Rightarrow \mathbf{M}^{1}=\left(\begin{array}{cc}
3^{1} & \frac{a}{2}\left(3^{1}-1\right) \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
3 & a \\
0 & 1
\end{array}\right)
$$

\{So the result is true for $n=1$ \}
Assume true for $n=k$
Or assume $\mathbf{M}^{n}$ or $\left(\begin{array}{ll}3 & a \\ 0 & 1\end{array}\right)^{k}=\left(\begin{array}{cc}3^{k} & \frac{a}{2}\left(3^{k}-1\right) \\ 0 & 1\end{array}\right)$
A correct method to find an expression for $n=k+1$
(b)(i) $\quad \operatorname{det}\left(\mathbf{M}^{n}\right)=3^{n}$ or $\operatorname{det}(\mathbf{M})=3$

Al
If true for $n=k$ then true for $n=k+1$ and as it is true for $n=1$ the statement is true for all (positive integers) $\boldsymbol{n}$
(ii)

Uses $5 \times \operatorname{det}\left(\mathbf{M}^{n}\right)=1215 \Rightarrow p^{n}=q \Rightarrow n=\ldots$

$$
5 \times 3^{n}=1215 \Rightarrow 3^{n}=243 \Rightarrow n=\ldots
$$

M1
$n=5$
$\left(\begin{array}{cc}3^{n} & \frac{a}{2}\left(3^{n}-1\right) \\ 0 & 1\end{array}\right)\binom{2}{-2}=\binom{123}{-2} \Rightarrow 2\left(3^{n}\right)-2 \frac{a}{2}\left(3^{n}-1\right)=123$

$$
\begin{aligned}
& \begin{array}{c}
\left(\begin{array}{ll}
3 & a \\
0 & 1
\end{array}\right)^{k+1}=\left(\begin{array}{cc}
3^{k} & \frac{a}{2}\left(3^{k}-1\right) \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & a \\
0 & 1
\end{array}\right) \\
\text { or }
\end{array} \\
& \left(\begin{array}{ll}
3 & a \\
0 & 1
\end{array}\right)^{k+1}=\left(\begin{array}{ll}
3 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
3^{k} & \frac{a}{2}\left(3^{k}-1\right) \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
3\left(3^{k}\right) & a\left(3^{k}\right)+\frac{a}{2}\left(3^{k}-1\right) \\
0
\end{array}\right) \text { or }\left(\begin{array}{cc}
3\left(3^{k}\right) & 3 \times \frac{a}{2}\left(3^{k}-1\right)+a \\
0
\end{array}\right) \quad \text { Ar } \\
& \left(\begin{array}{cc}
3^{k+1} & \frac{a}{2}\left[2\left(3^{k}\right)+\left(3^{k}-1\right)\right] \\
0 & 1
\end{array}\right)= \\
& \left(\begin{array}{cc}
3^{k+1} & \frac{a}{2}\left[3\left(3^{k}\right)-1\right] \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
3^{k+1} & \frac{a}{2}\left[3^{k+1}-1\right] \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
3\left(3^{k}\right) & 3 \times \frac{a}{2}\left(3^{k}-1\right)+a \\
0 & 1
\end{array}\right)= \\
& \left(\begin{array}{cc}
3^{k+1} & \frac{a}{2}\left(3\left(3^{k}-1\right)+2\right) \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
3^{k+1} & \frac{a}{2}\left(3^{k+1}-1\right) \\
0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\left(\begin{array}{cc}
243 & \frac{a}{2}(243-1) \\
0 & 1
\end{array}\right)\binom{2}{-2}=\binom{123}{-2} \Rightarrow 2(243)-2 \frac{a}{2}(243-1) \\
\left.\begin{array}{c}
1 \\
243 \\
\hline
\end{array} \begin{array}{c}
1 \\
0
\end{array} \begin{array}{c}
-\frac{a}{2}(243-1) \\
=-2 \Rightarrow a=\ldots
\end{array}\right)\binom{123}{-2}=\binom{2}{-2} \Rightarrow \frac{123-2 \frac{a}{2}(243-1)}{243} \\
a=1.5
\end{gathered}
$$

(11 marks)

## Notes:

(a)

B1: Shows that the result holds for $n=1$. Must see substitution in the RHS minimum required is $\left(\begin{array}{cc}3 & \frac{a}{2}(3-1) \\ 0 & 1\end{array}\right)$ and reaches $\left(\begin{array}{ll}3 & a \\ 0 & 1\end{array}\right)$
M1: Assumes the result is true for some value of $n=k$. Assume (true for) $n=k$ is sufficient.
Alternatively states assume $\mathbf{M}^{n}$ or $\left(\begin{array}{ll}3 & a \\ 0 & 1\end{array}\right)^{k}=\left(\begin{array}{cc}3^{k} & \frac{a}{2}\left(3^{k}-1\right) \\ 0 & 1\end{array}\right)$
M1: Sets up a matrix multiplication of their assumed result multiplied by the original matrix, either way round. Allow a slip as long as the intention is clear.
A1: Achieves a correct un-simplified matrix
A1: Reaches a correct simplified matrix with no errors, the correct un-simplified matrix seen previously and at least one intermediate line which must be correct.
A1: Correct conclusion. This mark is dependent on all previous marks except B mark but $n=1$ must have been attempted. It is gained by conveying the ideas of all four bold points either at the end of their solution or as a narrative in their solution. Condone $n \in \mathbb{Z}$

## (b)(i)

B1: States correct determinant. This can be implied by a correct equation
M1: Correct method to find a value of $n$ using $5 \times$ 'their $\operatorname{det}\left(\mathbf{M}^{n}\right)^{\prime}=1215$ which involves solving an index equation of the form $p^{n}=q$ where $n>1$
A1: $n=5$
(ii)

M1: Sets up an equation by multiplying the matrix $\mathbf{M}^{n}$ by $\binom{2}{-2}$ setting equal to $\binom{123}{-2}$ and reaches a value for $a$. You may just see $2\left(3^{n}\right)-2 \frac{a}{2}\left(3^{n}-1\right)=123 \Rightarrow a=\ldots$
Follow through on their value for $n$.
A1: $a=1.5$

