$$
\begin{aligned}
& \qquad z_{1}=6\left[\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right]=\ldots\{3+3 \sqrt{3} i\} \\
& z_{2}=6 \sqrt{3}\left[\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)\right]=\ldots\{-9+3 \sqrt{3} i\} \\
& \left\{z_{1}+z_{2}=\right\}(3+3 \sqrt{3} i)+(-9+3 \sqrt{3} i)=\ldots\{-6+6 \sqrt{3} i\} \\
& \text { Or }\left\{z_{1}+z_{2}=\right\} 6\left[\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right]+6 \sqrt{3}\left[\cos \left(\frac{5 \pi}{6}\right)+\right. \\
& \left.i \sin \left(\frac{5 \pi}{6}\right)\right]=a+b i \text { where } a \text { and } b \text { are constants, the trig function } \\
& \text { must be evaluated }
\end{aligned}
$$

Alternative 1

Clearly show the method to find modulus and argument for $z_{1}+z_{2}$ $\arg \left(z_{1}+z_{2}\right)=\pi$

$$
-\tan ^{-1}\left(\frac{6 \sqrt{3}}{6}\right)
$$

or $\tan ^{-1}\left(\frac{6 \sqrt{3}}{-6}\right)=\ldots\left\{\frac{2 \pi}{3}\right\}$
and
$\left|z_{1}+z_{2}\right|=\sqrt{6^{2}+(6 \sqrt{3})^{2}}$
$=\ldots\{12\}$
$-6+6 \sqrt{3} i=12\left(-\frac{1}{2}\right.$
$\left.+\frac{\sqrt{3}}{2} i\right)$
$=12\left(\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right) \quad \mathrm{dM1} \quad 2.1$

Alternative 2

$12 e^{\frac{2 \pi}{3} i}=12\left(\cos \frac{2 \pi}{3}\right.$
$\left.+i \sin \frac{2 \pi}{3}\right)$
$=\ldots\{-6+6 \sqrt{3} i\}$
$12 e^{\frac{2 \pi}{3} i}=-6+6 \sqrt{3} i$
Therefore $z_{1}+z_{2}=12 e^{\frac{2 \pi}{3} i_{*}}$
1.1b
$z_{1}+z_{2}=12 e^{\frac{2 \pi}{3} i} *$
(3)

Alternative 3

$z_{1}+z_{2}=6 e^{\frac{\pi}{3} i}+6 \sqrt{3} e^{\frac{5 \pi}{6} i}$
$=12\left[\frac{1}{2} \cos \left(\frac{\pi}{3}\right)+\frac{1}{2} i \sin \left(\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2} \cos \left(\frac{5 \pi}{6}\right)+\frac{\sqrt{3}}{2} i \sin \left(\frac{5 \pi}{6}\right)\right]$

$$
\begin{gathered}
12\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=12\left(\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right) \\
z_{1}+z_{2}=12 e^{\frac{2 \pi}{3} i *}
\end{gathered}
$$

A1*
3.1a

M1
dM1
2.1
(3)

Alternative 4

$z_{1}+z_{2}=6 e^{\frac{\pi}{3} i}+6 \sqrt{3} e^{\frac{5 \pi}{6} i}=6 e^{\frac{\pi}{3} i}\left(1+\sqrt{3} e^{e^{\frac{\pi}{2}}}\right)=6 e^{\frac{\pi}{3} i}(1+\sqrt{3} i)$
Either $r=\sqrt{1^{2}+(\sqrt{3})^{2}}=2$ and $\arg =\arctan \left(\frac{\sqrt{3}}{1}\right)=\frac{\pi}{3}$
M1

Or $6 e^{\frac{\pi}{3} i}(1+\sqrt{3} i)=12 e^{\frac{\pi}{3}}\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i() e^{\frac{\pi i}{3} i}\left(\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right)\right)$
$z_{1}+z_{2}=12 e^{\frac{\pi}{3}} e^{\frac{\pi}{3} i}=12 e^{\frac{2 \pi}{3} i_{*}}$

Alternative 5

Uses geometry to show that z_{1}, z_{2} and $z_{1}+z_{2}$ form a right-angled triangle

$$
\begin{gathered}
\arg \left(z_{1}+z_{2}\right)=\frac{\pi}{3}+\tan ^{-1}\left(\frac{6 \sqrt{3}}{6}\right)=\ldots\left\{\frac{2 \pi}{3}\right\} \\
\left|z_{1}+z_{2}\right|=\sqrt{(6)^{2}+(6 \sqrt{3})^{2}}=\ldots\{12\}
\end{gathered}
$$

$$
\begin{equation*}
z_{1}+z_{2}=12 e^{\frac{2 \pi}{3} i} * \tag{3}
\end{equation*}
$$

$$
\mathrm{A} 1^{*}
$$

(ii)

$$
\begin{gathered}
\sin \left(\frac{\pi}{3}\right)=\frac{|z|}{5} \Rightarrow|z|=\ldots \\
|z|=\frac{5 \sqrt{3}}{2}
\end{gathered}
$$

Alternative 1

Gradient $=-\tan \left(\frac{\pi}{3}\right) c=5 \tan \left(\frac{\pi}{3}\right)$ leading to $y=-\sqrt{3} x+5 \sqrt{3}$ or $\tan \left(\frac{\pi}{3}\right)=\frac{y}{5-x}$

$$
|z|^{2}=x^{2}+y^{2}=x^{2}+(-\sqrt{3} x+5 \sqrt{3})^{2}=4 x^{2}-30 x+75
$$

or $|z|^{2}=4(x-3.75)^{2}+18.75 \Rightarrow x=$..

$$
\begin{gathered}
|z|=\sqrt{4(\text { their } 3.75)^{2}-30(\text { their } 3.75)+75} \\
|z|=\frac{5 \sqrt{3}}{2}
\end{gathered}
$$

$$
\frac{d|z|^{2}}{d x}=8 x-30=0 \Rightarrow x=\ldots\{3.75\}
$$

$|z|=\sqrt{4(\text { their3.75) }-30(\text { their3.75 }+75}$
$|z|=\frac{5 \sqrt{3}}{2}$
Alternative 2
Gradient $=-\tan \left(\frac{\pi}{3}\right) c=5 \tan \left(\frac{\pi}{3}\right)$ leading to $y=-\sqrt{3} x+5 \sqrt{3}$

Perpendicular line through the origin $y=\frac{1}{\sqrt{3}} x$ and find the point of intersection of the two lines $\left(\frac{15}{4}, \frac{5 \sqrt{3}}{4}\right)$
Finds the distance from the origin to their point of intersection

$\|z\|=\sqrt{\left(\text { their } \frac{15}{4}\right)^{2}+\left(\text { their } \frac{5 \sqrt{3}}{4}\right)^{2}}=\ldots$	M1	1.1 b
$\|z\|=\frac{5 \sqrt{3}}{2}$	A1	1.1 b
	(3)	

(6 marks)

Notes:

(i)

M1: A complete method to find both z_{1} and z_{2} in the form $a+$ biand adds them together.
dM1: Dependent on previous method mark, finds the modulus and argument of $z_{1}+z_{2}$. They must show their method, just stating modulus $=12$ and argument $=\frac{2 \pi}{3}$ is not sufficient as this is a show question.
Alternative 1: Factorises out 12 and find the argument

Alternative 2: uses $12 e^{\frac{2 \pi}{3} i}=12\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)=\ldots$
A1*: Achieves the correct answer following no errors or omissions.
Alternatively shows that $12 e^{\frac{2 \pi}{3} i}=-6+6 \sqrt{3} i$ and concludes therefore $z_{1}+z_{2}=12 e^{\frac{2 \pi}{3} i_{*}}$

Alternative 3

M1: Factorises out 12 and writes in the form
$12\left[\ldots \cos \left(\frac{\pi}{3}\right)+\ldots i \sin \left(\frac{\pi}{3}\right)+\ldots \cos \left(\frac{5 \pi}{6}\right)+\ldots i \sin \left(\frac{5 \pi}{6}\right)\right]$
dM1: Dependent on previous mark. Writes in the form $12(a+b i)$ leading to the form $12(\cos \theta+$ $i \sin \theta$)
A1*: Achieves the correct answer following no errors or omissions.

Alternative 4

M1: Factorises out 6 and writes in the form $6 e^{\frac{\pi}{3} i}\left(1+\sqrt{3} e^{\frac{\pi}{2} i}\right)=6 e^{\frac{\pi}{3} i}(1+a i)$
dM1: Dependent on previous method mark, finds the modulus and argument of $(1+a i)$ or 12($a+$ bi) leading to the form $12(\cos \theta+i \sin \theta)$
A1*: Achieves the correct answer following no errors or omissions.

Alternative 5

M1: Draws a diagram to show that z_{1}, z_{2} and $z_{1}+z_{2}$ form a right-angled triangle.
dM1: Dependent on previous method mark, finds the modulus and argument of $z_{1}+z_{2}$
A1*: Achieves the correct answer following no errors or omissions.

Note: Writing $\arg \left(z_{1}+z_{2}\right)=\arctan \left(\frac{6 \sqrt{3}}{-6}\right)=-\frac{\pi}{3}$ therefore $\arg \left(z_{1}+z_{2}\right)=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$ with no diagram or finding $z_{1}+z_{2}$ is M0dM0A0
(ii)

M1: Draws a diagram and recognises that the shortest distance will form a right-angled triangle.
M1: Uses trigonometry to find the shortest length.
A1: Correct exact value.

Alternative 1

M1: Finds the equation of the half-line by attempting $m=-\tan \left(\frac{\pi}{3}\right) c=5 \tan \left(\frac{\pi}{3}\right)$. Finds $x^{2}+y^{2}$ in terms of x, differentiates, sets $=0$ and finds the value of x.
M1: Uses their value of x to find the minimum value of $\sqrt{x^{2}+y^{2}}$
A1: Correct exact value.

Alternative 2

M1: Finds the equation of the half-line by attempting $m=-\tan \left(\frac{\pi}{3}\right) c=5 \tan \left(\frac{\pi}{3}\right)$. Finds the equation of the line perpendicular which passes through the origin. Finds the point of intersection of the lines
M1: Finds the distance from the origin to their point of intersection
A1: Correct exact value.

