Question	Scheme		AOs
4(i)	$z_{1} = 6\left[\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right] = \dots \{3 + 3\sqrt{3}i\}$ $z_{2} = 6\sqrt{3}\left[\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right] = \dots \{-9 + 3\sqrt{3}i\}$ $\{z_{1} + z_{2} = \}(3 + 3\sqrt{3}i) + (-9 + 3\sqrt{3}i) = \dots \{-6 + 6\sqrt{3}i\}$ Or $\{z_{1} + z_{2} = \}6\left[\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right] + 6\sqrt{3}\left[\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right] = a + bi$ where a and b are constants, the trig function must be evaluated		3.1a
	Clearly show the method to find modulus and argument for $z_1 + z_2$ $arg(z_1 + z_2) = \pi$ $-tan^{-1}\left(\frac{6\sqrt{3}}{6}\right)$ or $tan^{-1}\left(\frac{6\sqrt{3}}{-6}\right) = \dots \left\{\frac{2\pi}{3}\right\}$ and $ z_1 + z_2 = \sqrt{6^2 + (6\sqrt{3})^2}$ $= \dots \{12\}$ Alternative $12e^{\frac{2\pi}{3}i}$	$fre 1$ $6\sqrt{3}i = 12\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$ $f\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$ $f\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$ $fre 2$ $= 12\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$ $\dots \{-6 + 6\sqrt{3}i\}$ $dM1$	2.1
	$z_1 + z_2 = 12e^{\frac{2\pi}{3}i} * $ $12e^{\frac{2\pi}{3}}$ Therefore	$ \begin{array}{c} \frac{z_{i}}{z_{i}} = -6 + 6\sqrt{3}i \\ z_{1} + z_{2} = 12e^{\frac{2\pi}{3}i}* \end{array} $ A1*	1.1b
		(3)	1.
	Alternative 3 $z_1 + z_2 = 6e^{\frac{\pi}{3}i} + 6\sqrt{3}e^{\frac{5\pi}{6}i}$ $= 12\left[\frac{1}{2}\cos\left(\frac{\pi}{3}\right) + \frac{1}{2}i\sin\left(\frac{\pi}{3}\right) + \frac{\sqrt{3}}{2}\cos\left(\frac{5\pi}{6}\right) + \frac{\sqrt{3}}{2}i\sin\left(\frac{5\pi}{6}\right)\right]$		3.1a
	$12\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right) = 12\left(\cos\left(\frac{2\pi}{3}\right)+i\sin\left(\frac{2\pi}{3}\right)\right)$		2.1
	$z_1 + z_2 = 12e^{\frac{2\pi}{3}i}*$		1.1b
		(3)	
	Alternative 4 $z_1 + z_2 = 6e^{\frac{\pi}{3}i} + 6\sqrt{3}e^{\frac{5\pi}{6}i} = 6e^{\frac{\pi}{3}i}\left(1 + \sqrt{3}e^{\frac{\pi}{2}i}\right) = 6e^{\frac{\pi}{3}i}\left(1 + \sqrt{3}i\right)$		
	Either $r = \sqrt{1^2 + (\sqrt{3})^2} = 2$ and $arg = \arctan\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}$		

	Alternative 1 Gradient = $-tan\left(\frac{\pi}{3}\right)c = 5tan\left(\frac{\pi}{3}\right)$ leading to $y = -\sqrt{3}x + 5\sqrt{3}$ or $tan\left(\frac{\pi}{3}\right) = \frac{y}{5-x}$ $ z ^2 = x^2 + y^2 = x^2 + (-\sqrt{3}x + 5\sqrt{3})^2 = 4x^2 - 30x + 75$ $\frac{d z ^2}{dx} = 8x - 30 = 0 \Rightarrow x = \{3.75\}$ or $ z ^2 = 4(x - 3.75)^2 + 18.75 \Rightarrow x = \{3.75\}$	M1	3.1a
	$ z = \sqrt{4(\text{their}3.75)^2 - 30(\text{their}3.75) + 75}$	M1	1.1b
	$ z = \frac{5\sqrt{3}}{2}$	A1	1.1b
		(3)	
	Alternative 2 Gradient = $-\tan\left(\frac{\pi}{3}\right)c = 5\tan\left(\frac{\pi}{3}\right)$ leading to $y = -\sqrt{3}x + 5\sqrt{3}$ Perpendicular line through the origin $y = \frac{1}{\sqrt{3}}x$ and find the point of intersection of the two lines $\left(\frac{15}{4}, \frac{5\sqrt{3}}{4}\right)$	M1	3.1a
	Finds the distance from the origin to their point of intersection $ z = \sqrt{\left(\text{their } \frac{15}{4}\right)^2 + \left(\text{their } \frac{5\sqrt{3}}{4}\right)^2} = \dots$	M1	1.1b
	$ z = \frac{5\sqrt{3}}{2}$	A1	1.1b
		(3)	
(6 marks)			

Notes:

(i)

M1: A complete method to find both z_1 and z_2 in the form a + bi and adds them together.

dM1: Dependent on previous method mark, finds the modulus and argument of $z_1 + z_2$. They must show their method, just stating modulus = 12 and argument = $\frac{2\pi}{3}$ is not sufficient as this is a show question.

Alternative 1: Factorises out 12 and find the argument

Alternative 2: uses $12e^{\frac{2\pi}{3}i} = 12\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = ...$

A1*: Achieves the correct answer following no errors or omissions.

Alternatively shows that $12e^{\frac{2\pi}{3}i} = -6 + 6\sqrt{3}i$ and concludes therefore $z_1 + z_2 = 12e^{\frac{2\pi}{3}i}$

Alternative 3

M1: Factorises out 12 and writes in the form $12\left[\dots \cos\left(\frac{\pi}{3}\right) + \dots i \sin\left(\frac{\pi}{3}\right) + \dots \cos\left(\frac{5\pi}{6}\right) + \dots i \sin\left(\frac{5\pi}{6}\right)\right]$

dM1: Dependent on previous mark. Writes in the form 12(a + bi) leading to the form $12(\cos \theta + i \sin \theta)$

A1*: Achieves the correct answer following no errors or omissions.

Alternative 4

M1: Factorises out 6 and writes in the form $6e^{\frac{\pi}{3}i}\left(1+\sqrt{3}e^{\frac{\pi}{2}i}\right) = 6e^{\frac{\pi}{3}i}(1+ai)$

dM1: Dependent on previous method mark, finds the modulus and argument of (1 + ai) or 12(a + bi) leading to the form $12(\cos \theta + i \sin \theta)$

A1*: Achieves the correct answer following no errors or omissions.

Alternative 5

M1: Draws a diagram to show that z_1, z_2 and $z_1 + z_2$ form a right-angled triangle.

dM1: Dependent on previous method mark, finds the modulus and argument of $z_1 + z_2$

A1*: Achieves the correct answer following no errors or omissions.

Note: Writing $arg(z_1 + z_2) = arctan\left(\frac{6\sqrt{3}}{-6}\right) = -\frac{\pi}{3}$ therefore $arg(z_1 + z_2) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$ with no diagram or finding $z_1 + z_2$ is **M0dM0A0**

(**ii**)

M1: Draws a diagram and recognises that the shortest distance will form a right-angled triangle. M1: Uses trigonometry to find the shortest length.

A1: Correct exact value.

Alternative 1

M1: Finds the equation of the half-line by attempting $m = -tan\left(\frac{\pi}{3}\right)c = 5tan\left(\frac{\pi}{3}\right)$. Finds $x^2 + y^2$ in terms of *x*, differentiates, sets = 0 and finds the value of *x*.

M1: Uses their value of x to find the minimum value of $\sqrt{x^2 + y^2}$

A1: Correct exact value.

Alternative 2

M1: Finds the equation of the half-line by attempting $m = -tan\left(\frac{\pi}{3}\right)c = 5tan\left(\frac{\pi}{3}\right)$. Finds the equation of the line perpendicular which passes through the origin. Finds the point of intersection of the lines

M1: Finds the distance from the origin to their point of intersection

A1: Correct exact value.