Question	Scheme	Marks	AOs
6(a)	$4x^{3} + px^{2} - 14x + q = 0 \Rightarrow x^{3} + \frac{p}{4}x^{2} - \frac{14}{4}x + \frac{q}{4} = 0$ $\alpha + \beta + \gamma = -\frac{p}{4}\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{14}{4}\text{ or } -\frac{7}{2}$	B1	3.1a
	$\frac{(\alpha + \beta + \gamma)^2}{(\alpha + \beta + \gamma)^2} = \frac{\alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \alpha\gamma + \beta\gamma)}{(-\frac{p}{4})^2} = 16 + 2\left(-\frac{7}{2}\right) \Rightarrow p = \dots$ or $(\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma) = \alpha^2 + \beta^2 + \gamma^2$ $\left(-\frac{p}{4}\right)^2 - 2\left(-\frac{7}{2}\right) = 16 \Rightarrow p = \dots$	M1	3.1a
	p = 12 * cso	A1*	1.1b
		(3)	
(b)	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \alpha\gamma + \alpha\beta}{\alpha\beta\gamma}$	M1	1.1b
	$\frac{\left(-\frac{7}{2}\right)}{\left(\frac{-q}{4}\right)} = \frac{14}{3} \Rightarrow q = \dots$	M1	1.1b
	q = 3	A1	1.1b
		(3)	
	Alternative $4(\frac{1}{w})^3 + 12(\frac{1}{w})^2 - 14(\frac{1}{w}) + q \{= 0\}$	M1	1.1b
	$qw^3 - 14w^2 + 12w + 4 = 0 \Rightarrow \frac{14}{3} = -\frac{-14}{q} \Rightarrow q = \dots$	M1	1.1b
	q = 3	A1	1.1b
		(3)	
(c)	$(\alpha - 1)(\beta - 1)(\gamma - 1) = \dots$ = $\alpha\beta\gamma - (\alpha\beta + \alpha\gamma + \beta\gamma) + (\alpha + \beta + \gamma) - 1$	M1 A1	1.1a 1.1b
	$= \left(-\frac{\text{their } 3}{4}\right) - \left(-\frac{7}{2}\right) + \left(-\frac{12}{4}\right) - 1 = \dots$ $= -\frac{5}{4}$	dM1	1.1b
	$=-\frac{5}{4}$	A1	1.1b
		(4)	
Alt	$4(x+1)^3 + 12(x+1)^2 - 14(x+1) + 3' = 0$ or substitutes in 1	M1	1.1a
	=4+12+14 + '3' = 5 or $4x^3 + 24x^2 + 22x + 2 +$ 'their q'	A1ft	1.1b

$= -\frac{\text{'their constant'}}{4}$	dM1	1.1b		
$=-\frac{5}{4}$	A1	1.1b		
(10 marks)				

Notes:

(a)

B1: Identifies the correct values for the sum and pair sum. This may be implied by substituting into an equation, it must be clear

M1: Uses the correct identity and values of their sum **and** their pair sum to find a value of *p*

A1*: p = 12 cso there is no need to see a reason

(b)

M1: Establishes a correct identity

M1: Uses their identity and their pair sum and their product of roots to find a value of q. Condone a slip but the intention must be clear.

A1: q = 3 Allow this mark from incorrect sign of both pair sum and product

Alternative

M1: Uses $x = \frac{1}{w}$ the substitution

M1: Simplifies to an quartic equation of the form $aw^3 + bw^2 + cw + d = 0$ and uses $\frac{14}{3} = -\frac{b}{a}$ to

find a value for q

A1: q = 3

(c)

M1: Attempts to multiply out the three brackets.

A1: Correct expansion.

dM1: Dependent on previous method. Substitutes in the value of their sum, pair sum and the value of their product as appropriate. Condone a slip but the intention must be clear

A1: Correct value

<u>Alternative</u>

M1: Substitutes (x + 1) or x = 1 into the cubic with their value of q. Allow the use of different letters e.g. (w + 1)

A1ft: Correct constant terms, follow through on their value of q

dM1: Applies $-\frac{\text{'their constant'}}{4}$

A1: Correct value