Question	Scheme	Marks	AOs
7(a)	$x = r \cos \theta = (1 + \tan \theta) \cos \theta = \cos \theta + \sin \theta$ $= \cos \theta + \tan \theta \cos \theta$ $\frac{dx}{d\theta} = \alpha (1 + \tan \theta) \sin \theta + \beta \sec^2 \theta \cos \theta \text{or} \frac{dx}{d\theta} = \alpha \sin \theta + \beta \sec^2 \theta \cos \theta + \delta \tan \theta \sin \theta$	M1	3.1a
	$\frac{dx}{d\theta} = -(1 + \tan\theta)\sin\theta + \sec^2\theta\cos\theta \text{or} \frac{dx}{d\theta} = -\sin\theta + \\ \cos\theta \\ \frac{dx}{d\theta} = -\sin\theta + \sec^2\theta\cos\theta - \tan\theta\sin\theta \text{ or} \frac{dx}{d\theta} = -\sin\theta + \\ \sec\theta - \tan\theta\sin\theta $	Al	1.1b
	For example $\begin{cases} \frac{dx}{d\theta} = -\sin \theta + \cos \theta = 0 \Rightarrow \tan \theta = 1 \Rightarrow \theta = \dots \\ \frac{dx}{d\theta} = -\sin \theta + \cos \theta = 0 \Rightarrow \sin \theta = \cos \theta \Rightarrow \theta = \dots \\ \frac{dx}{d\theta} = -\sin \theta + \cos \theta = \sqrt{2} \cos \left(\theta + \frac{\pi}{4}\right) = \theta = \dots \\ \text{or} \\ \frac{dx}{d\theta} = -(1 + \tan \theta) \sin \theta + \sec^2 \theta \cos \theta = 0 \\ \Rightarrow -\sin \theta - \frac{\sin^2 \theta}{\cos \theta} + \frac{1}{\cos \theta} = 0 \Rightarrow -\sin \theta + \frac{1 - \sin^2 \theta}{\cos \theta} = 0 \\ \Rightarrow -\sin \theta + \cos \theta = 0 \Rightarrow \tan \theta = 1 \Rightarrow \theta = \dots \\ \text{or} \\ \frac{dx}{d\theta} = -\sin \theta - \tan \theta \sin \theta + \sec \theta = 0 \\ \Rightarrow -\frac{1}{2} \sin 2 \theta - \sin^2 \theta + 1 = 0 \Rightarrow \sin 2 \theta + 2 \sin^2 \theta - 1 = 1 \\ \Rightarrow \sin 2 \theta - \cos 2 \theta = 1 \Rightarrow \sqrt{2} \sin \left(2\theta - \frac{\pi}{4}\right) = 1 \Rightarrow \theta = \dots \\ \text{or} \\ \frac{dx}{d\theta} = -(1 + \tan \left(\frac{\pi}{4}\right)) \sin \left(\frac{\pi}{4}\right) + \sec^2 \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right) = 0 \\ \frac{dx}{d\theta} = -\sin \left(\frac{\pi}{4}\right) + \sec^2 \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right) - \tan \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right) = 0 \end{cases}$	dM1	3.1a
	$r = 1 + tan\left(\frac{\pi}{4}\right) = 2$ therefore $A\left(2, \frac{\pi}{4}\right)^*$	A1*	2.1
		(4)	
1	Area bounded by the curve $=\frac{1}{2}\int (1 + \tan \theta)^2 \{d\theta\}$	M1	3.1a

$=\frac{1}{2}\int (1+2\tan\theta+\tan^2\theta) \{d\theta\}$		
$= \frac{1}{2} \int (1 + 2 \tan \theta + [\sec^2 \theta - 1]) \ \{d\theta\} = \dots$		
$= \frac{1}{2} [2 \ln \sec\theta + \tan\theta] \text{ or } \ln \sec\theta + \frac{1}{2} \tan\theta \text{ or } -\ln\cos\theta + \frac{1}{2} \tan\theta \text{ or } = \frac{1}{2} [-2 \ln \cos\theta + \tan\theta]$	A1	1.1b
$= \frac{1}{2} \left[2 \ln \left \sec \left(\frac{\pi}{4} \right) \right + \tan \left(\frac{\pi}{4} \right) \right] - \frac{1}{2} \left[2 \ln \left \sec (0) \right + \tan (0) \right] \\= \left(\ln \left \sec \left(\frac{\pi}{4} \right) \right + \frac{1}{2} \tan \left(\frac{\pi}{4} \right) \right) - \left(\ln \left \sec 0 \right + \frac{1}{2} \tan 0 \right) \\\left\{ = \ln \sqrt{2} + \frac{1}{2} \right\}$	dM1	1.1b
Area of triangle $=\frac{1}{2}xy = \frac{1}{2}\left(2\cos\frac{\pi}{4}\right)\left(2\sin\frac{\pi}{4}\right) = \dots \left\{\frac{1}{2} \times \sqrt{2} \times \sqrt{2} = 1\right\}$ The equation of the tangent is $r = \sqrt{2} \sec\theta$ then applies Area bounded of triangle $=\frac{1}{2}\int_{0}^{\frac{\pi}{4}}(\sqrt{2}\sec\theta)^{2} \{d\theta\}$	M1	1.1b
Finds the required area = area of triangle – area bounded by the curve $= 1 - \left[ln \sqrt{2} + \frac{1}{2} \right]$ May be seen within an integral = $\frac{1}{2} \int (\sqrt{2} \sec \theta)^2 \{ d\theta \} - \frac{1}{2} \int (1 + \tan \theta)^2 \{ d\theta \}$	M1	3.1a
$=\frac{1}{2}(1-\ln 2)$ * cso	A1*	2.1
	(6)	
Alternative Area bounded by the curve $=\frac{1}{2}\int (1 + tan \theta)^2 \{d\theta\}$ $=\frac{1}{2}\int (1 + 2tan \theta + tan^2 \theta) \{d\theta\}$ let $u = tan \theta \Rightarrow \frac{du}{d\theta} = sec^2 \theta$ Leading to $=\frac{1}{2} \stackrel{\circ}{0} \frac{(1 + 2u + u^2)}{1 + u^2} \{du\} = \frac{1}{2} \stackrel{\circ}{0} 1 + \frac{2u}{1 + u^2} \{du\} =$	M1	3.1a
$\frac{1}{2}[u+ln(1+u^2)]$	A1	1.1b
$\frac{1}{\frac{1}{2}[(1+\ln(1+(1)^2)) - (0+\ln 1)] \text{ or } \frac{1}{2}[(\tan\left(\frac{\pi}{4}\right) + \ln\left(1+\tan^2\left(\frac{\pi}{4}\right)\right)) - (\tan(0) + \ln(1+\tan^2(0)))] \\ \left\{ = \frac{1}{2}\ln 2 + \frac{1}{2} \right\}$	dM1	1.1b
Area of triangle = $\frac{1}{2}xy = \frac{1}{2}\left(2\cos\frac{\pi}{4}\right)\left(2\sin\frac{\pi}{4}\right) = \dots \left\{\frac{1}{2}\times\sqrt{2}\times\sqrt{2}=1\right\}$	M1	1.1b

(b)

(10 marks)				
	(6)			
$=\frac{1}{2}(1-\ln 2)*$	A1*	2.1		
Finds the required area = area of triangle – area bounded by the curve = $1 - \left[ln\sqrt{2} + \frac{1}{2} \right]$	M1	3.1a		

Notes:

(a)

M1: Substitutes the equation of C into $x = r \cos \theta$ and differentiates to the required form A1: Fully correct differentiation

dM1: Dependent on previous method mark. Sets their $\frac{dx}{d\theta} = 0$ and uses correct trig identities to find a value for θ . Alternatively substitutes $\theta = \frac{\pi}{4}$ into their $\frac{dx}{d\theta}$ and shows equals 0.

A1*: Shows that r = 2 and hence the polar coordinates $\left(2, \frac{\pi}{4}\right)$ from correct working

(b)

M1: Applies area $=\frac{1}{2}\int r^2 \theta \ d\theta$, multiplies out, uses the identity $\pm 1 \pm tan^2 \theta = sec^2 \theta$ to get into an integrable form **and** integrates. Condone missing $d\theta$, limits are not required for this mark **A1:** Correct integration. Note may include $\theta - \theta$ if the one's were not cancelled earlier.

dM1: Dependent on the first method mark. Applies the limits of $\theta = 0$ and $\theta = \frac{\pi}{4}$ and subtracts the correct way round. Since substitution of the limit $\theta = 0$ is 0 so may be implied

M1: Correct method to find the area of triangle seen. This may be minimal but area = 1 only is M0, they need to show some method.

M1: Finds the required area = area of triangle – area bounded by the curve

A1*: Correct answer, with no errors or omissions. cso

Alternative

M1: Applies area $=\frac{1}{2}\int r^2 \theta \ d\theta$, multiplies out, uses the substitution $u = tan \theta$ to get into an integrable form **and** integrates. Limits are not required for this mark

A1: Correct integration

dM1: Dependent on the first method mark. Applies the limits of u = 0 and u = 1 or substitutes back using $u = tan \theta$ and uses the limits $\theta = 0$ and $\theta = \frac{\pi}{4}$ and subtracts the correct way round. Since substitution of the limit $\theta = 0$ is 0 so may be implied

M1: Correct method to find the area of triangle

M1: Finds the required area = area of triangle – area bounded by the curve

A1*: Correct answer, with no errors or omissions. cso