$$
\begin{aligned}
x=r \cos \theta= & (1+\tan \theta) \cos \theta=\cos \theta+\sin \theta \\
& =\cos \theta+\tan \theta \cos \theta
\end{aligned}
$$

$\frac{d x}{d \theta}=\alpha(1+\tan \theta) \sin \theta+\beta \sec ^{2} \theta \cos \theta \quad$ or $\quad \frac{d x}{d \theta}=\alpha \sin \theta+$ $\beta \cos \theta$

$$
\frac{d x}{d \theta}=\alpha \sin \theta+\beta \sec ^{2} \theta \cos \theta+\delta \tan \theta \sin \theta
$$

$\frac{d x}{d \theta}=-(1+\tan \theta) \sin \theta+\sec ^{2} \theta \cos \theta \quad$ or $\quad \frac{d x}{d \theta}=-\sin \theta+$ $\cos \theta$
$\frac{d x}{d \theta}=-\sin \theta+\sec ^{2} \theta \cos \theta-\tan \theta \sin \theta$ or $\frac{d x}{d \theta}=-\sin \theta+$
$\sec \theta-\tan \theta \sin \theta$
For example

$$
\begin{gathered}
\left\{\frac{d x}{d \theta}=\right\}-\sin \theta+\cos \theta=0 \Rightarrow \tan \theta=1 \Rightarrow \theta=\ldots \\
\left\{\frac{d x}{d \theta}=\right\}-\sin \theta+\cos \theta=0 \Rightarrow \sin \theta=\cos \theta \Rightarrow \theta=\ldots \\
\left\{\frac{d x}{d \theta}=\right\}-\sin \theta+\cos \theta=\sqrt{2} \cos \left(\theta+\frac{\pi}{4}\right)=\theta=\ldots
\end{gathered}
$$

or

$$
\left\{\frac{d x}{d \theta}=\right\}-(1+\tan \theta) \sin \theta+\sec ^{2} \theta \cos \theta=0
$$

$$
\Rightarrow-\sin \theta-\frac{\sin ^{2} \theta}{\cos \theta}+\frac{1}{\cos \theta}=0 \Rightarrow-\sin \theta+\frac{1-\sin ^{2} \theta}{\cos \theta}=0
$$

$$
\Rightarrow-\sin \theta+\cos \theta=0 \Rightarrow \tan \theta=1 \Rightarrow \theta=\ldots
$$

or

$$
\left\{\frac{d x}{d \theta}=\right\}-\sin \theta-\tan \theta \sin \theta+\sec \theta=0
$$

$$
\Rightarrow-\frac{1}{2} \sin 2 \theta-\sin ^{2} \theta+1=0 \Rightarrow \sin 2 \theta+2 \sin ^{2} \theta-1=1
$$

$$
\Rightarrow \sin 2 \theta-\cos 2 \theta=1 \Rightarrow \sqrt{2} \sin \left(2 \theta-\frac{\pi}{4}\right)=1 \Rightarrow \theta=\ldots
$$

or

$$
\left\{\frac{d x}{d \theta}=\right\}-\sin \left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{4}\right)=0
$$

$$
\left\{\frac{d x}{d \theta}=\right\}-\left(1+\tan \left(\frac{\pi}{4}\right)\right) \sin \left(\frac{\pi}{4}\right)+\sec ^{2}\left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)=0
$$

$$
\left\{\frac{d x}{d \theta}=\right\}-\sin \left(\frac{\pi}{4}\right)+\sec ^{2}\left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)-\tan \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)=0
$$

$$
r=1+\tan \left(\frac{\pi}{4}\right)=2 \text { therefore } A\left(2, \frac{\pi}{4}\right) *
$$

(b)

$$
\begin{aligned}
& =\frac{1}{2} \int\left(1+2 \tan \theta+\tan ^{2} \theta\right)\{d \theta\} \\
& =\frac{1}{2} \int\left(1+2 \tan \theta+\left[\sec ^{2} \theta-1\right]\right)\{d \theta\}=\ldots
\end{aligned}
$$

$=\frac{1}{2}[2 \ln |\sec \theta|+\tan \theta]$ or $\ln |\sec \theta|+\frac{1}{2} \tan \theta$ or $-\operatorname{lncos} \theta+$ $\frac{1}{2} \tan \theta$ or $=\frac{1}{2}[-2 \ln |\cos \theta|+\tan \theta]$
$=\frac{1}{2}\left[2 \ln \left|\sec \left(\frac{\pi}{4}\right)\right|+\tan \left(\frac{\pi}{4}\right)\right]-\frac{1}{2}[2 \ln |\sec (0)|+\tan (0)]$ $=\left(\ln \left|\sec \left(\frac{\pi}{4}\right)\right|+\frac{1}{2} \tan \left(\frac{\pi}{4}\right)\right)-\left(\ln |\sec 0|+\frac{1}{2} \tan 0\right) \quad \mathrm{dM} 1$

1.1 b

$$
\left\{=\ln \sqrt{2}+\frac{1}{2}\right\}
$$

Area of triangle $=\frac{1}{2} x y=\frac{1}{2}\left(2 \cos \frac{\pi}{4}\right)\left(2 \sin \frac{\pi}{4}\right)=\ldots\left\{\frac{1}{2} \times \sqrt{2} \times \sqrt{2}=\right.$ 1\}
The equation of the tangent is $r=\sqrt{2} \sec \theta$ then applies
Area bounded of triangle $=\frac{1}{2} \int_{0}^{\frac{\pi}{4}}(\sqrt{2} \sec \theta)^{2}\{d \theta\}$
Finds the required area $=$ area of triangle - area bounded by the curve

$$
=1-\left[\ln \sqrt{2}+\frac{1}{2}\right]
$$

May be seen within an integral $=\frac{1}{2} \int(\sqrt{2} \sec \theta)^{2}\{d \theta\}-$
$\frac{1}{2} \int(1+\tan \theta)^{2}\{d \theta\}$

$\frac{1}{2}(1-\ln 2) *$ cso	$\mathrm{A} 1 *$

Alternative

Area bounded by the curve $=\frac{1}{2} \int(1+\tan \theta)^{2}\{d \theta\}$
$=\frac{1}{2} \int\left(1+2 \tan \theta+\tan ^{2} \theta\right)\{d \theta\}$ let $u=\tan \theta \Rightarrow \frac{d u}{d \theta}=\sec ^{2} \theta$
Leading to $=\frac{1}{2} \hat{O}_{0}^{\dot{O}} \frac{\left(1+2 u+u^{2}\right)}{1+u^{2}}\{\mathrm{~d} u\}=\frac{1}{2} \tilde{\mathrm{o}}_{\tilde{\mathrm{o}}}^{1} 1+\frac{2 u}{1+u^{2}}\{\mathrm{~d} u\}=\ldots$

$\frac{1}{2}\left[u+\ln \left(1+u^{2}\right)\right]$	A 1	1.1 b
$\frac{1}{2}\left[\left(1+\ln \left(1+(1)^{2}\right)\right)-(0+\ln 1)\right]$ or $\frac{1}{2}\left[\left(\tan \left(\frac{\pi}{4}\right)+\ln (1+\right.\right.$		
$\left.\left.\left.\tan ^{2}\left(\frac{\pi}{4}\right)\right)\right)-\left(\tan (0)+\ln \left(1+\tan ^{2}(0)\right)\right)\right]$	dM 1	1.1 b
$\left\{=\frac{1}{2} \ln 2+\frac{1}{2}\right\}$		

Area of triangle $=\frac{1}{2} x y=\frac{1}{2}\left(2 \cos \frac{\pi}{4}\right)\left(2 \sin \frac{\pi}{4}\right)=\ldots\left\{\frac{1}{2} \times \sqrt{2} \times \sqrt{2}=\right.$

Finds the required area $=$ area of triangle - area bounded by the curve

$=1-\left[\ln \sqrt{2}+\frac{1}{2}\right]$	M 1	3.1 a
$=\frac{1}{2}(1-\ln 2)^{*}$	$\mathrm{~A} 1^{*}$	2.1
	(6)	

(10 marks)

Notes:

(a)

M1: Substitutes the equation of C into $x=r \cos \theta$ and differentiates to the required form
A1: Fully correct differentiation
dM1: Dependent on previous method mark. Sets their $\frac{d x}{d \theta}=0$ and uses correct trig identities to find a value for θ. Alternatively substitutes $\theta=\frac{\pi}{4}$ into their $\frac{d x}{d \theta}$ and shows equals 0 .
A1*: Shows that $r=2$ and hence the polar coordinates $\left(2, \frac{\pi}{4}\right)$ from correct working
(b)

M1: Applies area $=\frac{1}{2} \int r^{2} \theta d \theta$, multiplies out, uses the identity $\pm 1 \pm \tan ^{2} \theta=\sec ^{2} \theta$ to get into an integrable form and integrates. Condone missing $d \theta$, limits are not required for this mark
A1: Correct integration. Note may include $\theta-\theta$ if the one's were not cancelled earlier.
$\mathbf{d M 1}$: Dependent on the first method mark. Applies the limits of $\theta=0$ and $\theta=\frac{\pi}{4}$ and subtracts the correct way round. Since substitution of the $\operatorname{limit} \theta=0$ is 0 so may be implied
M1: Correct method to find the area of triangle seen. This may be minimal but area $=1$ only is M0, they need to show some method.
M1: Finds the required area $=$ area of triangle - area bounded by the curve
A1*: Correct answer, with no errors or omissions. cso

Alternative

M1: Applies area $=\frac{1}{2} \int r^{2} \theta d \theta$, multiplies out, uses the substitution $u=\tan \theta$ to get into an integrable form and integrates. Limits are not required for this mark
A1: Correct integration
dM1: Dependent on the first method mark. Applies the limits of $u=0$ and $u=1$ or substitutes back using $u=\tan \theta$ and uses the limits $\theta=0$ and $\theta=\frac{\pi}{4}$ and subtracts the correct way round. Since substitution of the limit $\theta=0$ is 0 so may be implied
M1: Correct method to find the area of triangle
M1: Finds the required area $=$ area of triangle - area bounded by the curve
A1*: Correct answer, with no errors or omissions. cso

