Question	Scheme	Marks	AOs
2(a)	$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}$	B1	1.1b
		(1)	
(b)	$e^{e^{x}-1} = 1 + (e^{x}-1) + \frac{(e^{x}-1)^{2}}{2!} + \frac{(e^{x}-1)^{3}}{3!} + \dots \text{ or } e^{e^{x}-1} = e^{1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\dots-1}$	M1	1.1b
	$=1 + \left(x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \right) + \frac{1}{2} \left(x + \frac{x^{2}}{2!} + \dots\right)^{2} + \frac{1}{6} \left(x + \dots\right)^{3} + \dots$	M1	3.1a
	$=1+x+\left(\frac{1}{2}+\frac{1}{2}\right)x^{2}+\left(\frac{1}{6}+\frac{1}{2}\times2\times\frac{1}{2}+\frac{1}{6}\right)x^{3}+\dots$	M1	1.1b
	$=1+x+x^2+\frac{5}{2}x^3+$	A1	1.1b
	6	A1	2.1
		(5)	

(6 marks)

Notes:

(a)

B1: Correct series (ignore terms beyond x^3).

(b)

M1: Correctly applies the exponential Maclaurin expansion at least once, either to the base exponent or in the index. Allow 2 for 2! but must have 3! or 6 in the cube term.

M1: Attempts the exponential Maclaurin series twice and cancels the 1's in the "power" expansion. Allow if the 3! is incorrect for this mark, but a polynomial in *x* must have been achieved.

M1: Expands the brackets and gathers terms (not necessarily fully simplified, but should have a single term for each power).

A1: Any two correct from coefficients of x, x^2 and x^3 , need not be simplified.

A1: Fully correct answer with simplified terms..

NB: Question instructs to use standard Maclaurin series, so use of differentiation scores no mark.