Question	Scheme	Marks	AOs
3(a)	$\mathbf{M}^{2} + 11\mathbf{M} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \Rightarrow \begin{pmatrix} 34 & 5k - 10 \\ 6k - 12 & k^{2} + 30 \end{pmatrix} + \begin{pmatrix} -22 & 55 \\ 66 & 11k \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$	M1	1.1b
	$\Rightarrow a = 12$	A1	2.2a
	$5k - 10 + 55 = 0 \Longrightarrow 5k = -45 \Longrightarrow k = -9^* \text{ or}$ $6k - 12 + 66 = 0 \Longrightarrow 6k = -54 \Longrightarrow k = -9^* \text{ or}$ $k^2 + 11k + 30 = 12 \Longrightarrow k^2 + 11k + 18 = 0 \Longrightarrow k = -2, -9^*,$ $k \neq -2 \text{ as } 4 \times -2 - 10 + 55 \neq 0$	A1*	2.1
		(3)	
(b)	$ \begin{pmatrix} -2 & 5 \\ 6 & -9 \end{pmatrix} \begin{pmatrix} x \\ mx+c \end{pmatrix} = \begin{pmatrix} X \\ mX+c \end{pmatrix} \Longrightarrow \begin{cases} -2x+5(mx+c) = X \\ 6x-9(mx+c) = mX+c \end{cases} $	M1	1.1b
	$\Rightarrow 6x - 9mx - 9c = -2mx + 5m^2x + 5mc + c$	M1	3.1a
	$\Rightarrow (5m^2 + 7m - 6)x + (5m + 10)c = 0$	A1	1.1b
	$\Rightarrow 5m^2 + 7m - 6 = 0 \Rightarrow (m+2)(5m-3) \Rightarrow m = -2, \frac{3}{5}$	M1	1.1b
	$m = \frac{3}{5} \Longrightarrow 5m + 10 \neq 0$ so need $c = 0$ hence $y = \frac{3}{5}x$ is a fixed line	A1	2.2a
	$m = -2 \Longrightarrow 5m + 10 = 0$ so c can be anything, so $y = -2x + c$ for any c is fixed.	A1	2.2a
		(6)	
(c)	$((0,c) \rightarrow (5c, -9c) \text{ so need } c = 0,) (1,m) \rightarrow (-2+5m, 6-9m) \text{ so need}$ $5m = 3 \text{ hence } y = \frac{3}{5}x \text{ contains fixed points.}$	B1	3.2a
		(1)	
	1	(10	marks)
Notes:			
(a)			
M1: Evaluates M ² and uses in the equation given.			

A1: Correct value of *a* deduced from upper left entries.

A1*: Correct work to show k = -9. If off diagonals are used no further justification is needed (they are "given" the result is true). If the bottom right entry is used there must be a valid reason for rejecting -2 as a solution (ie checking the off diagonal).

(b)

M1: Sets up the matrix equation for invariant lines and extracts the simultaneous equations from the matrix equation.

M1: Eliminates "X" to get a linear equation in "x".

A1: Correct equation.

M1: Solves the equation in *m* by any valid means.

A1: Deduces $y = \frac{3}{5}x$ is a fixed line (where c = 0). If the value for m here is wrong, allow this A for y = -2x if the general case for the final A is not scored.

A1: Deduces y = -2x + c is a fixed line where c can be any value. Must include all the lines.

(c)

B1: Identifies $y = \frac{3}{5}x$ is a line of fixed points with reason. Allow if c = 0 is assumed. See scheme for one possible reason, others may be given.