Question

Scheme

$\mathbf{M}^{2}+11 \mathbf{M}=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right) \Rightarrow\left(\begin{array}{cc}34 & 5 k-10 \\ 6 k-12 & k^{2}+30\end{array}\right)+\left(\begin{array}{cc}-22 & 55 \\ 66 & 11 k\end{array}\right)=\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right)$
Marks
AOs
3(a)
$\Rightarrow a=12$
A1
2.2a
$5 k-10+55=0 \Rightarrow 5 k=-45 \Rightarrow k=-9 *$ or
$6 k-12+66=0 \Rightarrow 6 k=-54 \Rightarrow k=-9 *$ or
$k^{2}+11 k+30=12 \Rightarrow k^{2}+11 k+18=0 \Rightarrow k=-2,-9^{*}$,
$k \neq-2$ as $4 \times-2-10+55 \neq 0$
(b)
$\left(\begin{array}{cc}-2 & 5 \\ 6 & -9\end{array}\right)\binom{x}{m x+c}=\binom{X}{m X+c} \Rightarrow\left\{\begin{array}{c}-2 x+5(m x+c)=X \\ 6 x-9(m x+c)=m X+c\end{array}\right.$

$$
\Rightarrow 6 x-9 m x-9 c=-2 m x+5 m^{2} x+5 m c+c
$$

$$
\Rightarrow\left(5 m^{2}+7 m-6\right) x+(5 m+10) c=0
$$

$$
\Rightarrow 5 m^{2}+7 m-6=0 \Rightarrow(m+2)(5 m-3) \Rightarrow m=-2, \frac{3}{5}
$$

$m=\frac{3}{5} \Rightarrow 5 m+10 \neq 0$ so need $c=0$ hence $y=\frac{3}{5} x$ is a fixed line
$m=-2 \Rightarrow 5 m+10=0$ so c can be anything, so $y=-2 x+c$ for any c is fixed.
(c) $\quad((0, c) \rightarrow(5 c,-9 c)$ so need $c=0),(1, m) \rightarrow(-2+5 m, 6-9 m)$ so need $5 m=3$ hence $y=\frac{3}{5} x$ contains fixed points.

Notes:

(a)
$\mathbf{M} 1$: Evaluates \mathbf{M}^{2} and uses in the equation given.

A1: Correct value of a deduced from upper left entries.
A1*: Correct work to show $k=-9$. If off diagonals are used no further justification is needed (they are "given" the result is true). If the bottom right entry is used there must be a valid reason for rejecting -2 as a solution (ie checking the off diagonal).
(b)

M1: Sets up the matrix equation for invariant lines and extracts the simultaneous equations from the matrix equation.

M1: Eliminates " X " to get a linear equation in " x ".

A1: Correct equation.
M1: Solves the equation in m by any valid means.

A1: Deduces $y=\frac{3}{5} x$ is a fixed line (where $c=0$). If the value for m here is wrong, allow this A for $y=-2 x$ if the general case for the final A is not scored.

A1: Deduces $y=-2 x+c$ is a fixed line where c can be any value. Must include all the lines.
(c)

B1: Identifies $y=\frac{3}{5} x$ is a line of fixed points with reason. Allow if $c=0$ is assumed. See scheme for one possible reason, others may be given.

