| 5(a) | $\alpha=\frac{z_{1}+z_{2}}{2}=\frac{35-25 \mathrm{i}-29+39 \mathrm{i}}{2}=\ldots$ | M1 | 1.1b |
| :---: | :---: | :---: | :---: |
|  | $=3+7 \mathrm{i}$ * | A1* | 1.1b |
|  |  | (2) |  |
| (b) | $\begin{aligned} & \beta\left(z_{1}-\alpha\right)=\left(\frac{1+\mathrm{i}}{64}\right)(35-25 \mathrm{i}-(3+7 \mathrm{i}))=\left(\frac{1+\mathrm{i}}{64}\right)(32-32 \mathrm{i})= \\ & =\frac{1}{64}\left(32-32 \mathrm{i}+32 \mathrm{i}-32 \mathrm{i}^{2}\right)=\frac{1}{64}(32-32 \mathrm{i}+32 \mathrm{i}+32) \end{aligned}$ | M1 | 1.1b |
|  | $=\frac{1}{64}(64)=1^{*}$ | A1* | 1.1b |
|  |  | (2) |  |
| (c) | Roots are $1 \mathrm{e}^{\mathrm{i} \frac{\mathrm{i} \mathrm{\pi}}{3}}, \quad k=0,1,2,3,4,5$ | B1 | 1.1b |
|  |  | (1) |  |
| (d) | $w=\beta(z-\alpha)=\mathrm{e}^{\mathrm{i} \frac{k \pi}{3}} \Rightarrow z=\frac{\mathrm{e}^{\mathrm{i} \frac{k \pi}{3}}}{\beta}+\alpha$ | M1 | 3.1a |
|  | $\Rightarrow z=\frac{64\left(\cos \frac{k \pi}{3}+\mathrm{i} \sin \frac{k \pi}{3}\right)(1-\mathrm{i})}{(1+\mathrm{i})(1-\mathrm{i})}+3+7 \mathrm{i}=\ldots$ | M1 | 1.1b |
|  | $\begin{aligned} & \text { Two of } 19+16 \sqrt{3}+(16 \sqrt{3}-9) \mathrm{i}, 16 \sqrt{3}-13+(23+16 \sqrt{3}) \mathrm{i} \\ & -13-16 \sqrt{3}+(23-16 \sqrt{3}) \mathrm{i}, 19-16 \sqrt{3}-(9+16 \sqrt{3}) \mathrm{i} \end{aligned}$ | A1 | 2.5 |
|  | $\begin{aligned} & \text { All four of } 19+16 \sqrt{3}+(16 \sqrt{3}-9) \mathrm{i}, 16 \sqrt{3}-13+(23+16 \sqrt{3}) \mathrm{i} \\ & -13-16 \sqrt{3}+(23-16 \sqrt{3}) \mathrm{i}, 19-16 \sqrt{3}-(9+16 \sqrt{3}) \mathrm{i} \end{aligned}$ | A1 | 2.2a |

## Notes:

(a)

M1: Attempts the midpoint of $z_{1}$ and $z_{2}$
A1*: Correct point.

## (b)

M1: Substitutes into the equation with $z_{1}$ and $\alpha$ and $\beta$, simplifies and expands and applies $\mathrm{i}^{2}=-1$ A1*: Correct answer.
(c)

B1: Correct roots, accept all 6 listed or given in general form as in the scheme. Need not show the 1.
(d)

M1: Realises the need to set the roots of unity equal to $\beta(z-\alpha)$ and solve for $z$. Must be attempted at least once with any of their roots.

M1: Finds the Cartesian form from their equation for at least one of the roots other than $z_{1}$ and $z_{2}$
A1: At least two correct other roots than $z_{1}$ and $z_{2}$ in Cartesian form.
A1: Deduces all four correct in Cartesian form.

