8(a)	One possibility is (that all three roots lie on) the real axis.	B1	2.2a
	The other possibility is that all three roots have the same real part so lie on a vertical line.	B1	3.1a
		(2)	
(b)	Other roots are $\frac{3}{2}$ and $\frac{3}{2}-\frac{3}{2} \mathrm{i}$	B1	3.2a
		(1)	
(c)(i)	Common root must be $\frac{3}{2}$	B1	2.2a
		(1)	
(ii)	So $\mathrm{g}(z)=\left(z-\frac{3}{2}\right)(z+4)(z+\alpha)$	M1	1.1b
	$-\frac{3}{2} \times 4 \times \alpha=12 \Rightarrow \alpha=-2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(3)	
(d)	$\mathrm{f}(z)=8\left(z-\frac{3}{2}\right)\left(z-\frac{3}{2}-\frac{3}{2} \mathrm{i}\right)\left(z-\frac{3}{2}+\frac{3}{2} \mathrm{i}\right)=8\left(z-\frac{3}{2}\right)\left(z^{2}-3 z+\frac{9}{2}\right)$	M1	1.1b
	$\begin{aligned} \mathrm{f}(z)=\mathrm{g}(z) & \Rightarrow 8\left(z-\frac{3}{2}\right)\left(z^{2}-3 z+\frac{9}{2}\right)=\left(z-\frac{3}{2}\right)(z+4)(z-2) \\ & \Rightarrow 8 z^{2}-24 z+36=(z+4)(z-2) \quad\left(\text { or } z=\frac{3}{2}\right) \end{aligned}$	M1	3.1a
	$\Rightarrow 7 z^{2}-26 z+44 \Rightarrow z=\frac{26 \pm \sqrt{26^{2}-4 \times 7 \times 44}}{14}=\ldots$	M1	1.1b
	So solutions are $\frac{3}{2}, \frac{13 \pm i \sqrt{139}}{7}$	A1	1.1b
		(4)	

(11 marks)

Notes:

(a)

B1: Identifies the case that all three roots could be real so lie on the real axis. Accept as a diagram or equation given. Mention of real axis is sufficient.
B1: Identifies the case of vertical lines (where there is a complex conjugate pair and the third root must lie on the real axis with same real part as the pair).

B1: Interprets the conclusion from (a) in context by identifying the correct two roots.
(c)

B1: Deduces the real root is the one in common.
M1: Forms an expression for $g(z)$ using the two known roots. Alternatively, if product of roots is used first, it is for forming a cubic expression for $g(z)$ from their roots.

M1: Uses the given form for $\mathrm{g}(z)$ in the question to find the third root/value for α in their expression. May be scored before the previous M if product of roots is used to find the third root before forming the cubic.
A1: Correct expression for $g(z)$, either factorised or expanded.
(d)

M1: Uses their roots of $f(z)$ to form a cubic expression for $f(z)$, and expands to at least a linear term times a quadratic with real coefficients (which may be seen later).

M1: Sets their expressions equal and factorises out or cancels the common term to achieve a quadratic expression in z. Allow if $f(z)$ is not yet expanded.

M1: Expands, gathers terms and solves the resulting quadratic. Allow this mark if the $z=\frac{3}{2}$ solution is not given.
A1: All three correct solutions given.

