Question	Scheme	Marks	AOs
4	$\frac{2}{(r+4)(r+6)} \equiv \frac{A}{r+4} + \frac{B}{r+6} \Longrightarrow A = \dots, B = \dots$	M1	3.1a
	$\frac{2}{(r+4)(r+6)} \equiv \frac{1}{r+4} - \frac{1}{r+6}$	A1	1.1b
	$\sum_{r=1}^{n} \frac{2}{(r+4)(r+6)} = \sum_{r=1}^{n} \frac{1}{r+4} - \frac{1}{r+6}$		
	$\frac{1}{5} - \frac{1}{7} + \frac{1}{6} - \frac{1}{8} + \frac{1}{7} - \frac{1}{9} + \dots$	M1	2.1
	$+\frac{1}{n+2} - \frac{1}{n+4} + \frac{1}{n+3} - \frac{1}{n+5} + \frac{1}{n+4} - \frac{1}{n+6}$		
	$=\frac{1}{5}+\frac{1}{6}-\frac{1}{n+5}-\frac{1}{n+6}$	A1	2.2a
	$=\frac{1}{5}+\frac{1}{6}-\frac{1}{n+5}-\frac{1}{n+6}=\frac{11(n+5)(n+6)-30(n+6)-30(n+5)}{30(n+5)(n+6)}$	M1	1.1b
	$=\frac{n(11n+61)}{30(n+5)(n+6)}$	A1	1.1b
		(6)	
(6 marks)			

Notes

M1: Recognises the need to find partial fractions and applies a correct method leading to finding values for *A* and *B*

Allow a slip when finding the constants

A1: Correct partial fractions seen at any stage. Not just values for A and B listed

Note: Proof by induction will not score the next 4 marks.

M1: Starts the process of finding terms at the start and at the end, in order to establish the non-cancelling terms

Must have attempted a minimum of r = 1, r = 2, ... r = n - 1 and r = n, this may be

implied by their correct non-cancelling terms.

Follow through on their values of A and B. Look for

$$r = 1 \circledast \quad \frac{A}{5} - \frac{B}{7} \qquad \qquad r = 2 \circledast \quad \frac{A}{6} - \frac{B}{8}$$
$$r = n - 1 \circledast \quad \frac{A}{n+3} - \frac{B}{n+5} \qquad \qquad r = n \circledast \quad \frac{A}{n+4} - \frac{B}{n+6}$$

A1: Correct non-cancelling terms which may be listed separately.

Correct fractions from the beginning and end that do not cancel stated.

M1: Combines 'their' fractions of the form $p + \frac{q}{n+5} + \frac{r}{n+6}$ over a correct common denominator which does not need to be the lowest common denominator and obtains a quadratic expression in

which does not need to be the lowest common denominator and obtains a quadratic expression in the numerator.

A1: Correct answer.

Note: If they start with r = 0 the maximum they can score is M1A1M0A0M1A0