Question	Scheme	Marks	AOs
6(a)	$2m^2 + 5m + 2 = 0 \Longrightarrow m = -\frac{1}{2}, -2$	M1	3.4
	$x = A\mathrm{e}^{-0.5t} + B\mathrm{e}^{-2t}$	A1	1.1b
	PI is of the form $x = pt + q$	B1	1.1b
	$\frac{\mathrm{d}x}{\mathrm{d}t} = p, \ \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 0 \Longrightarrow 5p + 2pt + 2q = 4t + 12 \Longrightarrow p = \dots, q = \dots$	M1	3.4
	p = 2, q = 1	A1	1.1b
	$x = Ae^{-0.5t} + Be^{-2t} + 2t + 1$	A1ft	1.1b
		(6)	
(b)	$t = 0, \ x = 3 \Longrightarrow 3 = A + B + 1$	M1	3.4
	$\frac{dx}{dt} = -0.5Ae^{-0.5t} - 2Be^{-2t} + 2$		
	$t = 0, \frac{\mathrm{d}x}{\mathrm{d}t} = -2 \Longrightarrow -\frac{1}{2}A - 2B + 2 = -2$	M1	3.4
	$\Rightarrow A = \dots, B = \dots$		
	$x = 2e^{-2t} + 2t + 1$	A1	1.1b
(c)(i)	dr	(3)	
(C)(I)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -4\mathrm{e}^{-2t} + 2$	M1	3.1b
	$e^{-2t} = \frac{1}{2} \Longrightarrow -2t = \ln \frac{1}{2} \Longrightarrow t = \frac{1}{2} \ln 2$	dM1	2.1
	$x = 2e^{-2t} + 2t + 1 = 1 + \ln 2 + 1 = 2 + \ln 2^*$	A1*	1.1b
(c)(ii)	$\frac{d^2x}{dt^2} = 8e^{-2t}$ is > 0 for all values of t so distance is a minimum	B1ft	2.4
		(4)	
(d)	Examples:		
	For large values of t, $\left[e^{-2t} \rightarrow 0 \Rightarrow\right] x \rightarrow 2t+1$ so constant speed		
	For large values of t , $\left[e^{-2t} \rightarrow 0 \Rightarrow\right] \frac{dx}{dt} \rightarrow 2$ so constant speed	B1ft	3.2b
	For large values of t, $\left[e^{-2t} \rightarrow 0 \Rightarrow\right] \frac{d^2x}{dt^2} \rightarrow 0$ so constant speed		
	Conclusion: so the model is suitable		
		(1)	
Notes (14)			marks)
(a)			
M1: Attempts to solve $2m^2 + 5m + 2 = 0$, usual rules apply for solving a quadratic equation. A1: Correct CF. Do not need "x =" here, but must be in terms of t			

B1: Correct form for the PI i.e. x = pt + q or $x = at^2 + bt + c$

M1: Differentiates their PI (of the forms x = pt + q or $x = at^2 + bt + c$) twice and substitutes into the given differential equation finding values for their constants to obtain a PI of the form pt + q, $p, q \neq 0$

A1: Correct PI

A1ft: Correct GS or correct ft GS, which is the sum of their CF and PI. This is dependent on achieving both previous M marks. Must have x = and their GS must be in terms of t.

(b)

M1: Substitutes x = 3 when t = 0 into their GS to establish an equation in A and B, allow minor slips if the intention is clear.

M1: Differentiates their answer to part (a) which must be in terms of *t* only, and sets = -2 with t = 0 to establish another equation in *A* and *B* and solves simultaneously to find *A* and *B*.

Do not be concerned about how their simultaneous equations are solved; award this mark if they then go on to write values for *A* and *B*.

Functions which require the use of product rule or trigonometric functions must be differentiated appropriately.

A1: Correct PS. Need "x =" here, their answer must be in terms of t and no other variable.

(c) Mark (i) and (ii) together but only award for work done in (c) (i)

M1: Differentiates their Particular Solution of the form $x = ae^{-kt} + bt + c$ where c may be 0 to obtain an expression of the form $Ce^{-kt} + D$

dM1: Solves an equation of the form $\operatorname{Ce}^{-kt} + D = 0$, $C \times D < 0$, to obtain $t = -\frac{1}{k} \ln\left(\frac{-D}{C}\right)$

A1*: Substitutes $t = \frac{1}{2} \ln 2$ oe to obtain the printed answer with no errors.

Condone going from $2e^{-2(\frac{1}{2}\ln 2)} + 2(\frac{1}{2}\ln 2) + 1 = 2 + \ln 2$

(c)(ii)

B1ft: Obtains a second derivative of the form $\frac{d^2x}{dt^2} = \lambda e^{-\mu t}$, $\lambda, \mu > 0$ and makes a conclusion e.g.

- $\frac{d^2x}{dt^2} > 0$ (for all values of *t*) hence minimum.
- or substitutes their value of t (even if incorrect) and states $\frac{d^2x}{dt^2} > 0$ hence minimum

(d)

B1ft: Dependent on having obtained a Particular Solution of the form f(t)+bt+c where f(t) only has terms in ae^{-kt} where k > 0 and $a, b \neq 0$

This mark is awarded for the candidate demonstrating that in the model for "large values" or "as $t \to \infty$ ", the value of their $e^{-kt} \to 0$, so there is constant speed **and** states that the model is suitable, or equivalent statement. (See scheme for examples)