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(d) Examples: 

For large values of t, 2e 0 2 1t x t− →  → +   so constant speed 
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Conclusion: so the model is suitable 
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(14 marks) 

Notes 

(a) 

M1: Attempts to solve 22 5 2 0m m+ + =  , usual rules apply for solving a quadratic equation. 

A1: Correct CF. Do not need “x =” here, but must be in terms of t 

B1: Correct form for the PI i.e. x = pt + q or x = at2 + bt + c 

M1: Differentiates their PI (of the forms x = pt + q or x = at2 + bt + c) twice and substitutes into 

the given differential equation finding values for their constants to obtain a PI of the form pt + q,     

p, q ≠ 0 

A1: Correct PI  

A1ft: Correct GS or correct ft GS, which is the sum of their CF and PI. This is dependent on 

achieving both previous M marks. Must have x =  and their GS must be in terms of t. 

 



(b) 

M1: Substitutes x = 3 when t = 0 into their GS to establish an equation in A and B, allow minor 

slips if the intention is clear. 

 

M1: Differentiates their answer to part (a) which must be in terms of t only, and sets = −2 with t = 

0 to establish another equation in A and B and solves simultaneously to find A and B. 

Do not be concerned about how their simultaneous equations are solved; award this mark if they 

then go on to write values for A and B. 

Functions which require the use of product rule or trigonometric functions must be differentiated 

appropriately. 

 

A1: Correct PS. Need “x =” here, their answer must be in terms of t and no other variable. 

 

 

(c) Mark (i) and (ii) together but only award for work done in (c) 

(i) 

M1: Differentiates their Particular Solution of the form 𝑥 = 𝑎𝑒−𝑘𝑡 + 𝑏𝑡 + 𝑐 where c may be 0 to 

obtain an expression of the form Ce kt D− +  

 

dM1: Solves an equation of the form Ce 0, 0kt D C D− + =   , to obtain 
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(c)(ii) 

B1ft: Obtains a second derivative of the form 
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• or substitutes their value of t (even if incorrect) and states 
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(d)  

B1ft: Dependent on having obtained a Particular Solution of the form f ( )t bt c+ + where f(t) only 

has terms in ktae− where k > 0 and a, b ≠ 0 

This mark is awarded for the candidate demonstrating that in the model for “large values”  

or “as t → ∞" , the value of their 𝑒−𝑘𝑡 → 0, so there is constant speed and states that the model is 

suitable, or equivalent statement. (See scheme for examples) 
 

 

 

 

 

 

 




