Question	Scheme	Marks	AOs
7(a)	$z = e^{\frac{k\pi}{3}i}, k = 0, 1, 2, 3, 4, 5$	M1	1.1b
		A1 (2)	1.1b
(b)	Im	(_)	
		B1	2.2a
		51	2.24
		dB1	1.1b
	• •		
		(2)	
(c)	e.g. $\left(\sqrt{3}+i\right)^6 = \left(2e^{\frac{\pi}{6}i}\right)^6 = 64e^{i\pi} = -64*$		
	or		
	$\left[2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)\right]^6 = 2^6(\cos\pi + i\sin\pi) = 64(-1) = -64*$	M1	1.1b
	or		1.10
	$\left(\sqrt{3}+i\right)^{6} = \left(\sqrt{3}\right)^{6} + 6\left(\sqrt{3}\right)^{5}i - 15\left(\sqrt{3}\right)^{4} - 20\left(\sqrt{3}\right)^{3}i + 15\left(\sqrt{3}\right)^{2} + 6\sqrt{3}i + i^{6}$	A1*	2.1
	= 27 - 135 + 45 - 1 = -64 *		
	or		
	$\left(\sqrt{3}+i\right)^{6} = = 27 + 54\sqrt{3}i + 135i^{2} + 60\sqrt{3}i^{3} + 45i^{4} + 6\sqrt{3}i^{5} + i^{6}$		
	$= 27 + 54\sqrt{3}i - 135 - 60\sqrt{3}i + 45 + 6\sqrt{3}i - 1 = -64*$		
		(2)	
(d)	r = 2	B1	2.2a
	$z = 2e^{\frac{\pi}{6}i} \times e^{\frac{k\pi}{3}i}, k = 0, 1, 2, 3, 4, 5$	M1	3.1a
	$z = 2e^{\left(\frac{\pi}{6} + \frac{k\pi}{3}\right)i}, k = 0, 1, 2, 3, 4, 5$	A1	1.1b
		(3)	1
(9 marks) Notes			

(a)

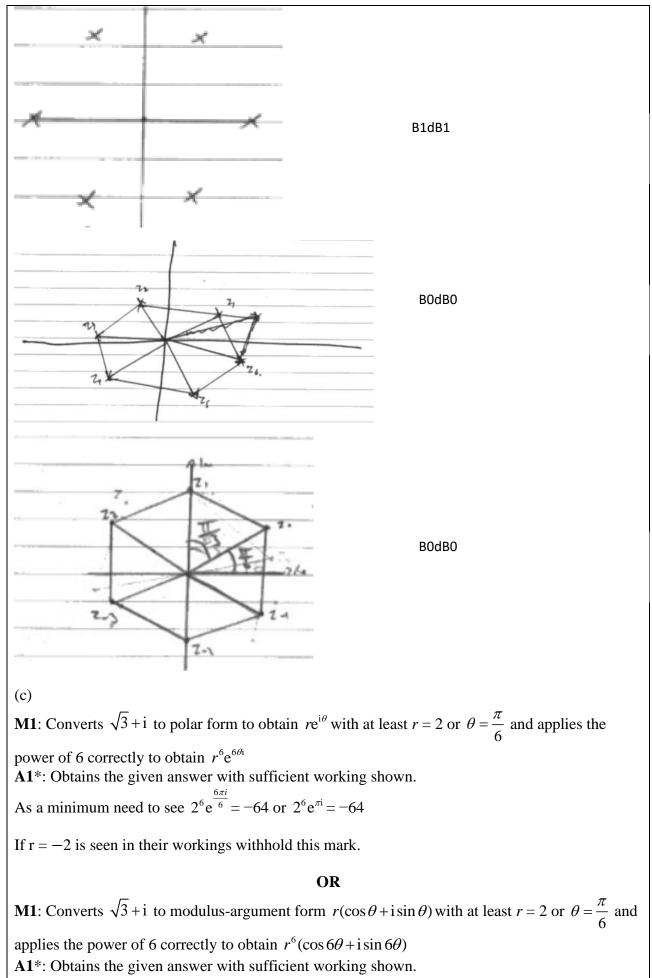
M1: For sight of $e^{\frac{k\pi}{3}i}$ Accept any value for *k*

A1: All six roots fully defined as shown or listed separately with their values of θ within the given range with no incorrect or extra values. Ensure i and π are present in each term.

Note: Roots if listed are e^0 , $e^{\frac{\pi}{3}i}$, $e^{\frac{2\pi}{3}i}$, $e^{\pi i}$, $e^{\frac{4\pi}{3}i}$, $e^{\frac{5\pi}{3}i}$, condone 1 for e^0 and/or -1 for $e^{\pi i}$

(b)

B1: Plots 6 points that form a hexagon, with a point on the positive real axis and a point on the negative real axis, and one point in each quadrant.


Do not be concerned about the position of each point from the centre, however the sketch must convey a hexagon.

dB1: The points form a hexagon, centre the origin (see diagram), axes need not be labelled. Look for the axes acting as lines of symmetry.

(Drawing line/vectors to each point is acceptable but not necessary for either mark)

Im 64 ef B1dB1 eni 00: e3rci 0 784 ei(F) eig) B1dB1 e^(m) eio Pile e (3) (11) B1dB1

Examples

M1: Attempts to expand $(\sqrt{3} + i)^6$ fully using an attempt at the binomial expansion. Must have 7 terms for $(a+b)^n$ and correct binomial coefficients with $a = \sqrt{3}$, b = i and n = 6A1*: Obtains the given answer with at least one intermediate line.

OR

M1: Attempts the full expansion of $(\sqrt{3} + i)^6 = (\sqrt{3} + i)(\sqrt{3} + i)(\sqrt{3} + i) \dots (\sqrt{3} + i) =$

There must be no brackets, no irrational numbers and no terms in i in their simplified answer.

A1*: Obtains the given answer with sufficient working shown including correct full expansion, with at least one intermediate line.

(d) **B1**: Deduces r = 2 (only) **M1**: Obtains at least one value of z in the form $re^{i\theta}$ with their consistent value of r, and θ taking one of $\left\{\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\right\}$ **A1**: For $2e^{\frac{\pi}{6}i}, 2e^{\frac{\pi}{2}i}, 2e^{\frac{5\pi}{6}i}, 2e^{\frac{7\pi}{6}i}, 2e^{\frac{3\pi}{2}i}, 2e^{\frac{11\pi}{6}i}$ with no incorrect or extra values. Accept unsimplified arguments such as having a solution of $2e^{\frac{9\pi}{6}i}$. Ensure i and π are present in each term. Accept $2e^{\frac{\pi}{2}i}$ as 2i and $2e^{\frac{3\pi}{2}i}$ as -2i