6. The motion of a particle P along the x-axis is modelled by the differential equation $2\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 2x = 4t + 12$

where *P* is *x* metres from the origin *O* at time *t* seconds,
$$t \ge 0$$

(6)

(3)

(4)

(1)

(a) Determine the general solution of the differential equation.

(b) Hence determine the particular solution for which x = 3 and $\frac{dx}{dt} = -2$ when t = 0(c) (i) Show that, according to the model, the minimum distance between O and P

is $(2 + \ln 2)$ metres.

(ii) Justify that this distance is a minimum.

For large values of t the particle is expected to move with constant speed.

(d) Comment on the suitability of the model in light of this information.