Quest	tion Scheme	Marks	AOs	
3 (a	Attempts $(x-2)^2 + (y+5)^2 =$	M1	1.1b	
	Centre (2, -5)	A1	1.1b	
		(2)		
(b)	Sets $k + 2^2 + 5^2 > 0$	M1	2.2a	
	$\Rightarrow k > -29$	Alft	1.1b	
		(2)		
(4 marks)				
Notes:				
(a)				
M1:	Attempts to complete the square so allow $(x-2)^2 + (y+5)^2 = \dots$			
A1:	States the centre is at $(2, -5)$. Also allow written separately $x = 2, y = -5$			
	(2, -5) implies both marks			
(b)				
M1:	Deduces that the right hand side of their $(x \pm)^2 + (y \pm)^2 =$ is >0 or ≥ 0			
A1ft:	ft: $k > -29$ Also allow $k \ge -29$ Follow through on their rhs of $(x \pm)^2 + (y \pm)^2 =$			