Questi	on Scheme	Marks	AOs
9(a)	$\tan\theta + \cot\theta \equiv \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$	M1	2.1
	$\equiv \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$	A1	1.1b
	$\equiv \frac{1}{\frac{1}{2}\sin 2\theta}$	M1	2.1
	$\equiv 2 \operatorname{cosec} 2\theta *$	A1*	1.1b
		(4)	
(b)	States $\tan \theta + \cot \theta = 1 \Longrightarrow \sin 2\theta = 2$ AND no real solutions as $-1 \le \sin 2\theta \le 1$	B1	2.4
		(1)	
		(5 n	narks)
A1: M1: A1*:	Writes $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\cot \theta = \frac{\cos \theta}{\sin \theta}$ Achieves a correct intermediate answer of $\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$ Uses the double angle formula $\sin 2\theta = 2\sin \theta \cos \theta$ Completes proof with no errors. This is a given answer. Note: There are many alternative methods. For example $\tan \theta + \cot \theta = \tan \theta + \frac{1}{\tan \theta} = \frac{\tan^2 \theta + 1}{\tan \theta} = \frac{\sec^2 \theta}{\tan \theta} = \frac{1}{\cos^2 \theta \times \frac{\sin \theta}{\cos \theta}} = \frac{1}{\cos \theta \times \sin \theta}$	$\frac{1}{\sin \theta}$ then a	is the
(b) B1:	nain scheme. Scored for sight of $\sin 2\theta = 2$ and a reason as to why this equation has no result for easons could be $-1 \le \sin 2\theta \le 1$ and therefore $\sin 2\theta \ne 2$ for $\sin 2\theta = 2 \Longrightarrow 2\theta = \arcsin 2$ which has no answers as $-1 \le \sin 2\theta \le 1$	real solutio	ns.