Question	Scheme	Marks	AOs	
13(a)	Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	M1	1.1b	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{3}\sin 2t}{\sin t} \left(=2\sqrt{3}\cos t\right)$	A1	1.1b	
		(2)		
(b)	Substitutes $t = \frac{2\pi}{3}$ in $\frac{dy}{dx} = \frac{\sqrt{3}\sin 2t}{\sin t} = (-\sqrt{3})$	M1	2.1	
	Uses gradient of normal = $-\frac{1}{\frac{dy}{dx}} = \left(\frac{1}{\sqrt{3}}\right)$	M1	2.1	
	Coordinates of $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$	B1	1.1b	
	Correct form of normal $y + \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}(x+1)$	M1	2.1	
	Completes proof $\Rightarrow 2x - 2\sqrt{3}y - 1 = 0 *$	A1*	1.1b	
		(5)		
(c)	Substitutes $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$	M1	3.1a	
	Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic in $\cos t$	M1	3.1a	
	$\Rightarrow 12\cos^2 t - 4\cos t - 5 = 0$	A1	1.1b	
	Finds $\cos t = \frac{5}{6}, \frac{1}{2}$	M1	2.4	
	Substitutes their $\cos t = \frac{5}{6}$ into $x = 2\cos t$, $y = \sqrt{3}\cos 2t$,	M1	1.1b	
	$Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$	A1	1.1b	
		(6)		
	1	(13 marks)		

Ques	Question 13 continued		
	Notes:		
(a)			
M1:	Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ and achieves a form $k \frac{\sin 2t}{\sin t}$ Alternatively candidates may apply the		
	double angle identity for $\cos 2t$ and achieve a form $k \frac{\sin t \cos t}{\sin t}$		
A1:	Scored for a correct answer, either $\frac{\sqrt{3}\sin 2t}{\sin t}$ or $2\sqrt{3}\cos t$		
(b)			
M1:	For substituting $t = \frac{2\pi}{3}$ in their $\frac{dy}{dx}$ which must be in terms of t		
M1:	Uses the gradient of the normal is the negative reciprocal of the value of $\frac{dy}{dx}$. This may be		
	seen in the equation of <i>l</i> .		
B1:	States or uses (in their tangent or normal) that $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$		
M1:	Uses their numerical value of $-1/\frac{dy}{dx}$ with their $\left(-1, -\frac{\sqrt{3}}{2}\right)$ to form an equation of the		
	normal at P		
A1*:	This is a proof and all aspects need to be correct. Correct answer only $2x - 2\sqrt{3}y - 1 = 0$		
(c)			
M1:	For substituting $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$ to produce an equation in <i>t</i> . Alternatively candidates could use $\cos 2t = 2\cos^2 t - 1$ to set up an equation of the form $y = Ax^2 + B$.		
M1:	Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic equation in $\cos t$		
	In the alternative method it is for combining their $y = Ax^2 + B$ with $2x - 2\sqrt{3}y - 1 = 0$ to get an equation in just one variable		
A1:	For the correct quadratic equation $12\cos^2 t - 4\cos t - 5 = 0$		
	Alternatively the equations in x and y are $3x^2 - 2x - 5 = 0$ $12\sqrt{3}y^2 + 4y - 7\sqrt{3} = 0$		
M1:	Solves the quadratic equation in $\cos t$ (or x or y) and rejects the value corresponding to P.		
M1:	Substitutes their $\cos t = \frac{5}{6}$ or their $t = \arccos\left(\frac{5}{6}\right)$ in $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$		
	If a value of x or y has been found it is for finding the other coordinate.		
A1:	$Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$. Allow $x = \frac{5}{3}, y = \frac{7}{18}\sqrt{3}$ but do not allow decimal equivalents.		