14(a)	Uses or implies $h=0.5$	B1	1.1b
	For correct form of the trapezium rule $=$	M1	1.1b
	$\frac{0.5}{2}\{3+2.2958+2(2.3041+1.9242+1.9089)\}=4.393$	A1	1.1b
		(3)	
(b)	Any valid statement reason, for example - Increase the number of strips - Decrease the width of the strips - Use more trapezia	B1	2.4
		(1)	
(c)	For integration by parts on $\int x^{2} \ln x \mathrm{~d} x$	M1	2.1
	$=\frac{x^{3}}{3} \ln x-\int \frac{x^{2}}{3} \mathrm{~d} x$	A1	1.1b
	$\int-2 x+5 \mathrm{~d} x=-x^{2}+5 x \quad(+c)$	B1	1.1b
	All integration attempted and limits used Area of $S=\int_{1}^{3} \frac{x^{2} \ln x}{3}-2 x+5 \mathrm{~d} x=\left[\frac{x^{3}}{9} \ln x-\frac{x^{3}}{27}-x^{2}+5 x\right]_{x=1}^{x=3}$	M1	2.1
	Uses correct ln laws, simplifies and writes in required form	M1	2.1
	Area of $S=\frac{28}{27}+\ln 27 \quad(a=28, b=27, c=27)$	A1	1.1b
		(6)	

Question 14 continued

Notes:

(a)

B1: States or uses the strip width $h=0.5$. This can be implied by the sight of $\frac{0.5}{2}\{\ldots\}$ in the trapezium rule
M1: For the correct form of the bracket in the trapezium rule. Must be y values rather than x values $\{$ first y value + last y value $+2 \times($ sum of other y values) $\}$

A1: 4.393
(b)

B1: See scheme
(c)

M1: Uses integration by parts the right way around.
Look for $\int x^{2} \ln x \mathrm{~d} x=A x^{3} \ln x-\int B x^{2} \mathrm{~d} x$
A1: $\quad \frac{x^{3}}{3} \ln x-\int \frac{x^{2}}{3} \mathrm{~d} x$
B1: Integrates the $-2 x+5$ term correctly $=-x^{2}+5 x$
M1: All integration completed and limits used
M1: Simplifies using $\ln \operatorname{law}(\mathrm{s})$ to a form $\frac{a}{b}+\ln c$
A1: Correct answer only $\frac{28}{27}+\ln 27$

