Question	Scheme	Marks	AOs
14(a)	Uses or implies $h = 0.5$	B1	1.1b
	For correct form of the trapezium rule =	M1	1.1b
	$\frac{0.5}{2} \{3 + 2.2958 + 2(2.3041 + 1.9242 + 1.9089)\} = 4.393$	A1	1.1b
		(3)	
(b)	 Any valid statement reason, for example Increase the number of strips Decrease the width of the strips Use more trapezia 	B1	2.4
		(1)	
(c)	For integration by parts on $\int x^2 \ln x dx$	M1	2.1
	$=\frac{x^3}{3}\ln x - \int \frac{x^2}{3} \mathrm{d}x$	A1	1.1b
	$\int -2x + 5 \mathrm{d}x = -x^2 + 5x (+c)$	B1	1.1b
	All integration attempted and limits used		
	Area of $S = \int_{1}^{3} \frac{x^2 \ln x}{3} - 2x + 5 dx = \left[\frac{x^3}{9} \ln x - \frac{x^3}{27} - x^2 + 5x\right]_{x=1}^{x=3}$	M1	2.1
	Uses correct ln laws, simplifies and writes in required form	M1	2.1
	Area of $S = \frac{28}{27} + \ln 27$ (<i>a</i> = 28, <i>b</i> = 27, <i>c</i> = 27)	A1	1.1b
		(6)	
	(10 ma		

Question 14 continued

Notes:

(a)

- **B1:** States or uses the strip width h = 0.5. This can be implied by the sight of $\frac{0.5}{2} \{...\}$ in the trapezium rule
- M1: For the correct form of the bracket in the trapezium rule. Must be y values rather than x values $\{$ first y value + last y value + 2×(sum of other y values) $\}$
- **A1:** 4.393
- **(b)**
- **B1:** See scheme
- (c)
- M1: Uses integration by parts the right way around.

Look for
$$\int x^2 \ln x \, dx = Ax^3 \ln x - \int Bx^2 \, dx$$

A1:
$$\frac{x^3}{3} \ln x - \int \frac{x^2}{3} dx$$

- **B1:** Integrates the -2x+5 term correctly $= -x^2+5x$
- M1: All integration completed and limits used
- **M1:** Simplifies using ln law(s) to a form $\frac{a}{b} + \ln c$
- A1: Correct answer only $\frac{28}{27} + \ln 27$