Question	Scheme	Marks	AOs
9	Gradient of chord = $\frac{(2(x+h)^3+5)-(2x^3+5)}{(2x^3+5)}$	B1	1.1b
	x+h-h	M1	2.1
	$(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$	B1	1.1b
	Gradient of chord = $\frac{(2(x^3 + 3x^2h + 3xh^2 + h^3) + 5) - (2x^3 + 5)}{1 + h - 1}$		
	$=\frac{2x^3+6x^2h+6xh^2+2h^3+5-2x^3-5}{1+h-1}$		
	$=\frac{6x^2h+6xh^2+2h^3}{h}$		
	$= 6x^2 + 6xh + 2h^2$	A1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{lim}}{h \to 0} \left(6x^2 + 6xh + 2h^2 \right) = 6x^2 \text{ and so at } P, \ \frac{\mathrm{d}y}{\mathrm{d}x} = 6(1)^2 = 6$	A1	2.2a
		(5)	
9	Let a point Q have x coordinate $1 + h$, so $y_Q = 2(1 + h)^3 + 5$	B1	1.1b
Alt 1	$\left\{ P(1,7), Q(1+h, 2(1+h)^3+3) \Rightarrow \right\}$		
	Gradient $PQ = \frac{2(1+h)^3 + 5 - 7}{1+h-1}$	M1	2.1
	$(1+h)^3 = 1 + 3h + 3h^2 + h^3$	B1	1.1b
	Gradient $PQ = \frac{2(1+3h+3h^2+h^3)+5-7}{1+h-1}$		
	$=\frac{2+6h+6h^2+2h^3+5-7}{1+h-1}$		
	$=\frac{6h+6h^2+2h^3}{h}$		
	$= 6 + 6h + 2h^2$	A1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{h \to 0} \left(6 + 6h + 2h^2 \right) = 6$	A1	2.2a
		(5)	

(5 marks)

Question 9 Notes:		
B1:	$2(x + h)^3 + 5$, seen or implied	
M1:	Begins the proof by attempting to write the gradient of the chord in terms of x and h	
B1:	$(x + h)^3 \rightarrow x^3 + 3x^2h + 3xh^2 + h^3$, by expanding brackets or by using a correct binomial expansion	
M1:	Correct process to obtain the gradient of the chord as $\alpha x^2 + \beta xh + \gamma h^2$, $\alpha, \beta, \gamma \neq 0$	
A1:	Correctly shows that the gradient of the chord is $6x^2 + 6xh + 2h^2$ and applies a limiting argument to	
	deduce when $y = 2x^3 + 5$, $\frac{dy}{dx} = 6x^2$. E.g. $\lim_{h \to 0} (6x^2 + 6xh + 2h^2) = 6x^2$. Finally, deduces that	
	at the point <i>P</i> , $\frac{dy}{dx} = 6$.	
	Note: δx can be used in place of h	
Alt 1		
B1:	Writes down the <i>y</i> coordinate of a point close to <i>P</i> .	
	E.g. For a point <i>Q</i> with $x = 1 + h$, $\{y_Q\} = 2(1 + h)^3 + 5$	
M1:	Begins the proof by attempting to write the gradient of the chord PQ in terms of h	
B1:	$(1+h)^3 \rightarrow 1+3h+3h^2+h^3$, by expanding brackets or by using a correct binomial expansion	
M1:	Correct process to obtain the gradient of the chord PQ as $\alpha + \beta h + \gamma h^2$, $\alpha, \beta, \gamma \neq 0$	
A1:	Correctly shows that the gradient of PQ is $6 + 6h + 2h^2$ and applies a limiting argument to deduce	
	that at the point P on $y = 2x^3 + 5$, $\frac{dy}{dx} = 6$. E.g. $\lim_{h \to 0} (6 + 6h + 2h^2) = 6$	
	Note: For Alt 1, δx can be used in place of <i>h</i>	