Question	Scheme	Marks	AOs
10 (a)	$y = \frac{3x-5}{x+1} \Rightarrow y(x+1) = 3x-5 \Rightarrow xy+y = 3x-5 \Rightarrow y+5 = 3x-xy$	M1	1.1b
	$\Rightarrow y+5=x(3-y) \Rightarrow \frac{y+5}{3-y}=x$	M1	2.1
	Hence $f^{-1}(x) = \frac{x+5}{3-x}, x \in \mathbb{R}, x \neq 3$	A1	2.5
		(3)	
(b)	$\mathrm{ff}(x) = \frac{3\left(\frac{3x-5}{x+1}\right) - 5}{\left(\frac{3x-5}{x+1}\right) + 1}$	M1	1.1a
	$\frac{3(3x-5)-5(x+1)}{x+1}$	M1	1.1b
	$= \frac{x+1}{\frac{(3x-5)+(x+1)}{x+1}}$	A1	1.1b
	$= \frac{9x - 15 - 5x - 5}{3x - 5 + x + 1} = \frac{4x - 20}{4x - 4} = \frac{x - 5}{x - 1} \text{(note that } a = -5\text{)}$	A1	2.1
		(4)	
(c)	$fg(2) = f(4-6) = f(-2) = \frac{3(-2)-5}{2+1} = 11$	M1	1.1b
	$1g(2) = 1(4-6) = 1(-2) = \frac{-2+1}{-2+1}$;=11	A1	1.1b
		(2)	
(d)	$g(x) = x^2 - 3x = (x - 1.5)^2 - 2.25$. Hence $g_{min} = -2.25$	M1	2.1
	Either $g_{\min} = -2.25$ or $g(x) \ge -2.25$ or $g(5) = 25 - 15 = 10$	B1	1.1b
	$-2.25 \le g(x) \le 10$ or $-2.25 \le y \le 10$	A1	1.1b
		(3)	
(e)	 E.g. the function g is many-one the function g is not one-one the inverse is one-many g(0) = g(3) = 0 	B1	2.4
		(1)	
	(13 m		narks)

Quest	Question 10 Notes:		
(a)			
M1:	Attempts to find the inverse by cross-multiplying and an attempt to collect all the <i>x</i> -terms (or swapped <i>y</i> -terms) onto one side		
M1:	A fully correct method to find the inverse		
A1:	A correct $f^{-1}(x) = \frac{x+5}{3-x}$, $x \in \mathbb{R}$, $x \neq 3$, expressed fully in function notation (including the domain)		
(b)			
M1:	Attempts to substitute $f(x) = \frac{3x-5}{x+1}$ into $\frac{3f(x)-5}{f(x)+1}$		
M1:	Applies a method of "rationalising the denominator" for both their numerator and their denominator.		
A1:	3(3x-5)-5(x+1)		
	$\frac{x+1}{(3x-5)+(x+1)}$ which can be simplified or un-simplified x+1		
A1:	Shows $ff(x) = \frac{x+a}{x-1}$ where $a = -5$ or $ff(x) = \frac{x-5}{x-1}$, with no errors seen.		
(c)			
M1:	Attempts to substitute the result of $g(2)$ into f		
A1:	Correctly obtains $fg(2) = 11$		
(d)			
M1:	Full method to establish the minimum of g.		
	E.g.		
	• $(x \pm \alpha)^2 + \beta$ leading to $g_{\min} = \beta$		
	• Finds the value of x for which $g'(x) = 0$ and inserts this value of x back into $g(x)$ in order		
	to find to g_{\min}		
B1:	For either		
	• finding the correct minimum value of g		
	(Can be implied by $g(x) \ge -2.25$ or $g(x) \ge -2.25$)		
	• stating $g(5) = 25 - 15 = 10$		
A1:	States the correct range for g. E.g. $-2.25 \leq g(x) \leq 10$ or $-2.25 \leq y \leq 10$		
(e)			
B1:	See scheme		