Question Scheme	Marks	AOs
11 (a) $f'(x) = k - 4x - 3x^2$		
f''(x) = -4 - 6x = 0	M1	1.1b
<u>Criteria 1</u> Either		
$\mathbf{f''(x)} = -4 - \mathbf{6x} = 0 \implies \mathbf{x} = \frac{4}{-6} \implies \mathbf{x} = -\frac{2}{3}$		
or $f''\left(-\frac{2}{3}\right) = -4 - 6\left(-\frac{2}{3}\right) = 0$		
Criteria 2 Either		
• $f''(-0.7) = -4 - 6(-0.7) = 0.2 > 0$		
f''(-0.6) = -4 - 6(-0.6) = -0.4 < 0		
or		
• $\mathbf{f}'''\left(-\frac{2}{3}\right) = -6 \neq 0$		
At least one of Criteria 1 or Criteria 2	B1	2.4
Both Criteria 1 and Criteria 2		
and concludes <i>C</i> has a point of inflection at $x = -\frac{2}{3}$	A1	2.1
	(3)	
(b) $f'(x) = k - 4x - 3x^2, AB = 4\sqrt{2}$		
$f(r) = kr - 2r^2 - r^3 \{+c\}$	M1	1.1b
	A1	1.1b
$f(0) = 0 \text{ or } (0, 0) \Rightarrow c = 0 \Rightarrow f(x) = kx - 2x^2 - x^3$ $\{f(x) = 0 \Rightarrow\} f(x) = x(k - 2x - x^2) = 0 \Rightarrow \{x = 0\} k - 2x - x^2 = 0$	A1	2.2a
$\frac{(x^2 + 2x - k = 0)}{\left\{x^2 + 2x - k = 0\right\}} \Rightarrow (x + 1)^2 - 1 - k = 0, x = \dots$	M1	2.1
$\Rightarrow x = -1 \pm \sqrt{k+1}$	A1	1.1b
$AB = \left(-1 + \sqrt{k+1}\right) - \left(-1 - \sqrt{k+1}\right) = 4\sqrt{2} \implies k = \dots$	M1	2.1
So, $2\sqrt{k+1} = 4\sqrt{2} \implies k = 7$	A1	1.1b
	(7)	

(10 marks)

Question 11 Notes:		
(a)		
M1:	E.g.	
	• attempts to find $f''\left(-\frac{2}{3}\right)$	
	• finds f "(x) and sets the result equal to 0	
B1:	See scheme	
A1:	See scheme	
(b)		
M1:	Integrates $f'(x)$ to give $f(x) = \pm kx \pm \alpha x^2 \pm \beta x^3$, $\alpha, \beta \neq 0$ with or without the constant of integration	
A1:	$f(x) = kx - 2x^2 - x^3$, with or without the constant of integration	
A1:	Finds $f(x) = kx - 2x^2 - x^3 + c$, and makes some reference to $y = f(x)$ passing through the origin	
	to deduce $c = 0$. Proceeds to produce the result $k - 2x - x^2 = 0$ or $x^2 + 2x - k = 0$	
M1:	Uses a valid method to solve the quadratic equation to give x in terms of k	
A1	Correct roots for x in terms of k. i.e. $x = -1 \pm \sqrt{k+1}$	
M1:	Applies $AB = 4\sqrt{2}$ on $x = -1 \pm \sqrt{k+1}$ in a complete method to find $k =$	
A1:	Finds $k = 7$ from correct solution only	